
 1

Lecture -19

Pointers, Virtual functions & Polymorphism

19.1 INTRODUCTION
Before getting into this section, it is recommended that students have a

proper understanding of pointers and class inheritance. A true object oriented
programming paradigm consists of: data hiding, encapsulation, inheritance and
polymorphism. First three of these have been discussed in earlier chapters. In
this chapter polymorphism will be discussed. We have already seen how concept
of polymorphism is implemented using overloaded operators and functions. The
overloaded member functions are ‘selected’ for invoking by matching arguments,
both type and number. This information is known to the compiler at the compile
time and, therefore, compiler is able to select the appropriate function for a
particular call at the compile time itself. This is called early binding or static
binding or static linking. This is also known as compile time polymorphism.
Polymorphism is in short the ability to call different functions by just using one
type of function call. It is a lot useful since it can group classes and their functions
together. If any of the following statements seem strange to you, you should
review the indicated sections:

Statement: Explained in:

int a::b(c) {}; Classes

a->b Pointers

class a: public b; Friendship and inheritance

Now let us consider a situation where function name and prototype is the same in
both the base and the derived class. For example, consider the following class
definitions:

 class A{
 int x;
 public:
 void show(){…} // show() in the base class
};
class B{
 int y;
 public:
 void show(){…} // show() in the derived class
};
 How do we use the member functions show() to print the values of objects
of both the class A and B? Function show() is not overloaded and therefore

 2

static binding does not apply. We have seen earlier that , in such situations, we
may use the class resolution operator to specify the class while invoking the
functions with the derived class objects.
 It would be nice if the appropriate member function is could be selected
while the program is running. This is known as runtime polymorphism. How
could it happen? C++ supports a mechanism known as virtual function to
achieve run time polymorphism.

Figure 19.1: Achieving polymorphism

 At run time, when it is known what class objects are under consideration,
the appropriate version of the function is invoked. Since the function is linked
with a particular class much later after the compilation, this process is termed as
late binding. It is also known as dynamic binding because the selection of the
appropriate function is done dynamically at run time.
 Dynamic binding is one of the powerful features of C++. This requires the
use of pointers to objects. We shall discuss in details how the object pointers and
virtual functions are used to implement dynamic binding.

19.2 Pointers to base class

One of the key features of derived classes is that a pointer to a derived
class is type-compatible with a pointer to its base class. Polymorphism is the art
of taking advantage of this simple but powerful and versatile feature, that brings
Object Oriented Methodologies to its full potential.

We are going to start by rewriting our program about the rectangle and the
triangle of the previous section taking into consideration this pointer
compatibility property:

 3

Program 19.1 Pointers to base class

// pointers to base class
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 };

class CRectangle: public CPolygon {
 public:
 int area ()
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area ()
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 cout << rect.area() << endl;
 cout << trgl.area() << endl;
 return 0;
}
/* 20
10 */

In function main, we create two pointers that point to objects of class
CPolygon (ppoly1 and ppoly2). Then we assign references to rect and trgl to
these pointers, and because both are objects of classes derived from CPolygon,
both are valid assignations.

 4

The only limitation in using *ppoly1 and *ppoly2 instead of rect and trgl is
that both *ppoly1 and *ppoly2 are of type CPolygon* and therefore we can only
use these pointers to refer to the members that CRectangle and CTriangle inherit
from CPolygon. For that reason when we call the area() members at the end of
the program we have had to use directly the objects rect and trgl instead of the
pointers *ppoly1 and *ppoly2.

In order to use area() with the pointers to class CPolygon, this member
should also have been declared in the class CPolygon, and not only in its derived
classes, but the problem is that CRectangle and CTriangle implement different
versions of area, therefore we cannot implement it in the base class. This is
when virtual members become handy:

19.3 Virtual members

A member of a class that can be redefined in its derived classes is known
as a virtual member. In order to declare a member of a class as virtual, we must
precede its declaration with the keyword virtual:

// virtual members
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area ()
 { return (0); }
 };

class CRectangle: public CPolygon {
 public:
 int area ()
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area ()
 { return (width * height / 2); }
 };

int main () {

 5

 CRectangle rect;
 CTriangle trgl;
 CPolygon poly;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 CPolygon * ppoly3 = &poly;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 ppoly3->set_values (4,5);
 cout << ppoly1->area() << endl;
 cout << ppoly2->area() << endl;
 cout << ppoly3->area() << endl;
 return 0;
}
/* 20 10 0 */

Now the three classes (CPolygon, CRectangle and CTriangle) have all the
same members: width, height, set_values() and area().

The member function area() has been declared as virtual in the base class
because it is later redefined in each derived class. You can verify if you want that
if you remove this virtual keyword from the declaration of area() within CPolygon,
and then you run the program the result will be 0 for the three polygons instead
of 20, 10 and 0. That is because instead of calling the corresponding area()
function for each object (CRectangle::area(), CTriangle::area() and
CPolygon::area(), respectively), CPolygon::area() will be called in all cases since
the calls are via a pointer whose type is CPolygon*.

Therefore, what the virtual keyword does is to allow a member of a
derived class with the same name as one in the base class to be appropriately
called from a pointer, and more precisely when the type of the pointer is a
pointer to the base class but is pointing to an object of the derived class,
as in the above example.

A class that declares or inherits a virtual function is called a polymorphic class.

Note that despite of its virtuality, we have also been able to declare an
object of type CPolygon and to call its own area() function, which always returns
0.

19.4 Abstract base classes

Abstract base classes are something very similar to our CPolygon class of
our previous example. The only difference is that in our previous example we
have defined a valid area() function with a minimal functionality for objects that
were of class CPolygon (like the object poly), whereas in an abstract base

 6

classes we could leave that area() member function without implementation at all.
This is done by appending =0 (equal to zero) to the function declaration.

An abstract base CPolygon class could look like this:

// abstract class CPolygon
class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area () =0;
};

Notice how we appended =0 to virtual int area () instead of specifying an
implementation for the function. This type of function is called a pure virtual
function, and all classes that contain at least one pure virtual function are
abstract base classes.

The main difference between an abstract base class and a regular
polymorphic class is that because in abstract base classes at least one of its
members lacks implementation we cannot create instances (objects) of it.

But a class that cannot instantiate objects is not totally useless; We can
create pointers to it and take advantage of all its polymorphic abilities. Therefore
a declaration like:

CPolygon poly;

would not be valid for the abstract base class we have just declared, because
tries to instantiate an object. Nevertheless, the following pointers:

CPolygon * ppoly1;
CPolygon * ppoly2;

would be perfectly valid.

This is so for as long as CPolygon includes a pure virtual function and therefore
it's an abstract base class. However, pointers to this abstract base class can be
used to point to objects of derived classes. Here you have the complete
example:

 7

Program 19.3 : Abstract base class

// abstract base class
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area (void) =0;
 };

class CRectangle: public CPolygon {
 public:
 int area (void)
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area (void)
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 cout << ppoly1->area() << endl;
 cout << ppoly2->area() << endl;
 return 0;
}

20
10

If you review the program you will notice that we refer to objects of
different but related classes using a unique type of pointer (CPolygon*). This can
be tremendously useful. For example, now we can create a function member of
the abstract base class CPolygon that is able to print on screen the result of the
area() function even though CPolygon itself has no implementation for this
function:

 8

// pure virtual members can be called
// from the abstract base class
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area (void) =0;
 void printarea (void)
 { cout << this->area() << endl; }
 };

class CRectangle: public CPolygon {
 public:
 int area (void)
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area (void)
 { return (width * height / 2); }
 };

int main () {
 CRectangle rect;
 CTriangle trgl;
 CPolygon * ppoly1 = ▭
 CPolygon * ppoly2 = &trgl;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 ppoly1->printarea();
 ppoly2->printarea();
 return 0;
}

20
10

Virtual members and abstract classes grant C++ the polymorphic
characteristics that make object-oriented programming such a useful instrument
in big projects. Of course, we have seen very simple uses of these features, but
these features can be applied to arrays of objects or dynamically allocated
objects.

 9

Let's end with the same example again, but this time with objects that are
dynamically allocated:

// dynamic allocation and polymorphism
#include <iostream>
using namespace std;

class CPolygon {
 protected:
 int width, height;
 public:
 void set_values (int a, int b)
 { width=a; height=b; }
 virtual int area (void) =0;
 void printarea (void)
 { cout << this->area() << endl; }
 };

class CRectangle: public CPolygon {
 public:
 int area (void)
 { return (width * height); }
 };

class CTriangle: public CPolygon {
 public:
 int area (void)
 { return (width * height / 2); }
 };

int main () {
 CPolygon * ppoly1 = new CRectangle;
 CPolygon * ppoly2 = new CTriangle;
 ppoly1->set_values (4,5);
 ppoly2->set_values (4,5);
 ppoly1->printarea();
 ppoly2->printarea();
 delete ppoly1;
 delete ppoly2;
 return 0;
}

20
10

Notice that the ppoly pointers:

CPolygon * ppoly1 = new CRectangle;

 10

CPolygon * ppoly2 = new CTriangle;

are declared being of type pointer to CPolygon but the objects dynamically
allocated have been declared having the derived class type directly.

