
 1

Lecture -20

INPUT/OUTPUT WITH FILES

So far we have printed output on the screen using cout command and read the
data from computer screen using cin command. To use these commands, we
have used iostream as the header file. In order to read data from file and write
data to file, C++ provides the following classes:

• ofstream: Stream class to write on files
• ifstream: Stream class to read from files
• fstream: Stream class to both read and write from/to files.

These classes are derived directly or indirectly from the classes istream,
and ostream. We have already used objects whose types were these classes:
cin is an object of class istream and cout is an object of class ostream.
Therefore, we have already been using classes that are related to our file
streams. And in fact, we can use our file streams the same way we are already
used to use cin and cout, with the only difference that we have to associate these
streams with physical files. Let's see an example:

Program 20.1: Basic file operation

// basic file operations
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 ofstream myfile;
 myfile.open ("example.txt");
 myfile << "Writing this to a file.\n";
 myfile.close();
 return 0;
}

[file
example.txt]
Writing this
to a file

This code creates a file called example.txt and inserts a sentence into it in
the same way we are used to do with cout, but using the file stream myfile
instead.

But let's go step by step:

 2

20.1 Open a file

The first operation generally performed on an object of one of these
classes is to associate it to a real file. This procedure is known as to open a file.
An open file is represented within a program by a stream object (an instantiation
of one of these classes, in the previous example this was myfile) and any input or
output operation performed on this stream object will be applied to the physical
file associated to it.

In order to open a file with a stream object we use its member function open():

open (filename, mode);

where filename is a null-terminated character sequence of type const char * (the
same type that string literals have) representing the name of the file to be
opened, and mode is an optional parameter with a combination of the following
flags:

ios::in Open for input operations.

ios::out Open for output operations.

ios::binary Open in binary mode.

Each one of the open() member functions of the classes ofstream, ifstream and
fstream has a default mode that is used if the file is opened without a second
argument:

class default mode parameter

ofstream ios::out

ifstream ios::in

fstream ios::in | ios::out

For ifstream and ofstream classes, ios::in and ios::out are automatically
and respectively assumed, even if a mode that does not include them is passed
as second argument to the open() member function.

The default value is only applied if the function is called without specifying
any value for the mode parameter. If the function is called with any value in that
parameter the default mode is overridden, not combined.

Since the first task that is performed on a file stream object is generally to
open a file, these three classes include a constructor that automatically calls the
open() member function and has the exact same parameters as this member.

 3

Therefore, we could also have declared the previous myfile object and conducted
the same opening operation in our previous example by writing:

ofstream myfile ("example.bin", ios::out | ios::binary);

Combining object construction and stream opening in a single statement. Both
forms to open a file are valid and equivalent.

To check if a file stream was successful opening a file, you can do it by
calling to member is_open() with no arguments. This member function returns a
bool value of true in the case that indeed the stream object is associated with an
open file, or false otherwise:

if (myfile.is_open()) { /* ok, proceed with output */ }

20.2 Closing a file

When we are finished with our input and output operations on a file we
shall close it so that its resources become available again. In order to do that we
have to call the stream's member function close(). This member function takes no
parameters, and what it does is to flush the associated buffers and close the file:

myfile.close();

Once this member function is called, the stream object can be used to
open another file, and the file is available again to be opened by other processes.

In case that an object is destructed while still associated with an open file,
the destructor automatically calls the member function close().

20.3 Text files

Text file streams are those where we do not include the ios::binary flag in
their opening mode. These files are designed to store text and thus all values
that we input or output from/to them can suffer some formatting transformations,
which do not necessarily correspond to their literal binary value.

Data output operations on text files are performed in the same way we
operated with cout:

// writing on a text file
#include <iostream>
#include <fstream>
using namespace std;

[file
example.txt]
This is a
line.
This is

 4

int main () {
 ofstream myfile ("example.txt");
 if (myfile.is_open())
 {
 myfile << "This is a line.\n";
 myfile << "This is another line.\n";
 myfile.close();
 }
 else cout << "Unable to open file";
 return 0;
}

another
line.

Data input from a file can also be performed in the same way that we did with cin:

// reading a text file
#include <iostream>
#include <fstream>
#include <string>
using namespace std;

int main () {
 string line;
 ifstream myfile ("example.txt");
 if (myfile.is_open())
 {
 while (! myfile.eof())
 {
 getline (myfile,line);
 cout << line << endl;
 }
 myfile.close();
 }

 else cout << "Unable to open file";

 return 0;
}

This is
a line.
This is
another
line.

This last example reads a text file and prints out its content on the screen.
Notice how we have used a new member function, called eof() that returns true in
the case that the end of the file has been reached. We have created a while loop
that finishes when indeed myfile.eof() becomes true (i.e., the end of the file has
been reached).

20.4 Checking state flags

 5

In addition to eof(), which checks if the end of file has been reached, other
member functions exist to check the state of a stream (all of them return a bool
value):
bad()

Returns true if a reading or writing operation fails. For example in the case
that we try to write to a file that is not open for writing or if the device
where we try to write has no space left. Returns true in the same cases as
bad(), but also in the case that a format error happens, like when an
alphabetical character is extracted when we are trying to read an integer
number.

#include <fstream>
#include <stdlib.h>
void main()
{
ifstream infile;
infile.open(“text”);
if(infile.bad()){
cerr<<”open failure”<<endl;
exit(1);
})

eof()
Returns true if a file open for reading has reached the end.

good()
It is the most generic state flag: it returns false in the same cases in which
calling any of the previous functions would return true. If file.good() is
true, all is well for the stream file and we can proceed to perform i.o
operation/

In order to reset the state flags checked by any of these member functions we
have just seen we can use the member function clear(), which takes no
parameters.

20.5 get and put stream pointers

All i/o streams objects have, at least, one internal stream pointer:

ifstream, like istream, has a pointer known as the get pointer that points to the
element to be read in the next input operation.

ofstream, like ostream, has a pointer known as the put pointer that points to the
location where the next element has to be written.

Finally, fstream, inherits both, the get and the put pointers, from iostream (which
is itself derived from both istream and ostream).

 6

These internal stream pointers that point to the reading or writing locations within
a stream can be manipulated using the following member functions:

Functions for Manipulating of File Pointers

• seekg() Moves get pointer (input) to a specified location
• seekp() Moves put pointer (output) to a specified location
• tellg() Gives the current position of the get pointer
• tellp() Gives the current position of the put pointer

For example, the statement

 Infile.seekg(10);
Moves the file pointer to the byte number 10. Remember, the bytes in a file are
numbered beginning from zero. Therefore, the pointer will be pointing to the 11th
byte in the file.
Consider the following statement:

 ofstream fileout;
 fileout.open(“hello”,ios::app);
 int p=fileout.tell();
On execution of these statements, the output pointer is moved to the end of the
file “hello” and the value ‘p’ will represent the number bytes in the file.

The other prototype for these functions is:

seekg (offset, direction);
seekp (offset, direction);

Using this prototype, the position of the get or put pointer is set to an offset
value relative to some specific point determined by the parameter direction. offset
is of the member type off_type, which is also an integer type. And direction is of
type seekdir, which is an enumerated type (enum) that determines the point from
where offset is counted from, and that can take any of the following values:

ios::beg offset counted from the beginning of the stream

ios::cur offset counted from the current position of the stream pointer

ios::end offset counted from the end of the stream

Following table gives some sample pointer offset calls and their action.
fout is an ofstream object.

Seek call Action

 7

fout.seek(0,ios::beg)

fout.seek(0,ios::curr)

fout.seek(0,ios::end)

fout.seek(m,ios::beg)

fout.seek(m,ios::curr)

fout.seek(-m,ios::curr)

fout.seek(-m,ios::end)

Go to start

Stay at the current position

Go to the end of file

Move to 9m+1)th byte in the file

Go forward by m bytes from the current position

Go backward by m bytes from the current position

Go backward by m bytes from the end

The following example uses the member functions we have just seen
to obtain the size of a file:

 // obtaining file size
#include <iostream>
#include <fstream>
using namespace std;

int main () {
 long begin,end;
 ifstream myfile ("example.txt");
 begin = myfile.tellg();
 myfile.seekg (0, ios::end);
 end = myfile.tellg();
 myfile.close();
 cout << "size is: " << (end-begin) << " bytes.\n";
 return 0;
}

size
is: 40
bytes.

Program illustrating use of put() and get() Function

#include <iostream>
#include <fstream>
#include <string.h>
using namespace std;

int main()
{

 8

 char string[80];
 cout<<”Enter a string\n”;
 cin>>string;
 int len=strlen(string); //Counts the length of string
 fstream file; // input and output stream
 file.open(“TEXT”,ios::in | ios::out);
 for(int i=0; i< ,len; i++)
 file.put(string[i]); //puts a character to a file

 file.seekg(0); //go to start , as pointer has gone to end

 char ch;
 while(file)
 {
 file.get(ch); //get a character from file
 cout<<ch; // display it on screen
 }
 return 0;
 }

Binary files

In binary files, to input and output data with the extraction and
insertion operators (<< and >>) and functions like getline is not
efficient, since we do not need to format any data, and data may not
use the separation codes used by text files to separate elements (like
space, newline, etc...).

File streams include two member functions specifically designed
to input and output binary data sequentially: write and read. The first
one (write) is a member function of ostream inherited by ofstream.
And read is a member function of istream that is inherited by
ifstream. Objects of class fstream have both members. Their
prototypes are:

write (memory_block, size);
read (memory_block, size);

where memory_block is of type "pointer to char" (char*), and
represents the address of an array of bytes where the read data

 9

elements are stored or from where the data elements to be written are
taken. The size parameter is an integer value that specifies the
number of characters to be read or written from/to the memory block.

// reading a complete binary file
#include <iostream>
#include <fstream>
using namespace std;

ifstream::pos_type size;
char * memblock;

int main () {
 ifstream file
"example.txt",ios::in|ios::binary|ios::ate);
 if (file.is_open())
 {
 size = file.tellg();
 memblock = new char [size];
 file.seekg (0, ios::beg);
 file.read (memblock, size);
 file.close();

 cout << "the complete file content is in memory";

 delete[] memblock;
 }
 else cout << "Unable to open file";
 return 0;
}/* the complete file content is in memory*/

In this example the entire file is read and stored in a memory
block. Let's examine how this is done:

First, the file is open with the ios::ate flag, which means that
the get pointer will be positioned at the end of the file. This way, when
we call to member tellg(), we will directly obtain the size of the file.
Notice the type we have used to declare variable size:

ifstream::pos_type size;

ifstream::pos_type is a specific type used for buffer and file
positioning and is the type returned by file.tellg(). This type is
defined as an integer type, therefore we can conduct on it the same

 10

operations we conduct on any other integer value, and can safely be
converted to another integer type large enough to contain the size of
the file. For a file with a size under 2GB we could use int:

int size;
size = (int) file.tellg();

Once we have obtained the size of the file, we request the allocation of
a memory block large enough to hold the entire file:

memblock = new char[size];

Right after that, we proceed to set the get pointer at the beginning of
the file (remember that we opened the file with this pointer at the
end), then read the entire file, and finally close it:

file.seekg (0, ios::beg);
file.read (memblock, size);
file.close();

At this point we could operate with the data obtained from the file. Our
program simply announces that the content of the file is in memory
and then terminates.

Buffers and Synchronization

When we operate with file streams, these are associated to an internal
buffer of type streambuf. This buffer is a memory block that acts as
an intermediary between the stream and the physical file. For
example, with an ofstream, each time the member function put
(which writes a single character) is called, the character is not written
directly to the physical file with which the stream is associated.
Instead of that, the character is inserted in that stream's intermediate
buffer.

When the buffer is flushed, all the data contained in it is written to the
physical medium (if it is an output stream) or simply freed (if it is an
input stream). This process is called synchronization and takes place
under any of the following circumstances:

 11

• When the file is closed: before closing a file all buffers that
have not yet been flushed are synchronized and all pending data
is written or read to the physical medium.

• When the buffer is full: Buffers have a certain size. When the
buffer is full it is automatically synchronized.

• Explicitly, with manipulators: When certain manipulators are
used on streams, an explicit synchronization takes place. These
manipulators are: flush and endl.

• Explicitly, with member function sync(): Calling stream's
member function sync(), which takes no parameters, causes an
immediate synchronization. This function returns an int value
equal to -1 if the stream has no associated buffer or in case of
failure. Otherwise (if the stream buffer was successfully
synchronized) it returns 0.

