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PHYS 3033 GENERAL RELATIVITY PART I 

Chapter 1 

The evolution of the concepts of space and time from Antiquity to Einstein  

1.1 Space and time in Antiquity 

a) The physical space in Antiquity 

 

 

In Aristotle’s (384-322 B.C.) days, ideas on physical space and 

time were vague and had yet to be sharpened into their modern 

forms 1 . Space was associated with the distribution of things 

directly observed. Things distributed in time, however, they were 

not directly observed, and generally intervals of time were not 

easily measured. How to define motion by combining intervals of 

space and time was not at all clear and motion was poorly 

distinguished from other forms of change. 

   Aristotle (384-322)  

 

In his book Physics (350 BC) (in Greek physis means nature, physicist means student of 

nature), Aristotle proposed a law of motion, which may be expressed by the relation: 

 

Applied force= resistance x speed 

 

“A body will move through a given medium in a given time and through the same 

distance in a thinner medium in a shorter time”. 

 

b) The mathematical space in Antiquity 

 

In the ancient Delta civilizations, geometry was the 

art of land measurement, indispensable in the 

construction of such mammoth works as the Great 

Pyramid of Giza and Stonehenge. The Babylonians 

of 2000 BC and the Chinese of 300 BC used the 

rule that the circumference of a circle is three 

times its diameter and this value for   is found in 

Hebraic scripture.  The Greeks, in their thorough 

fashion, developed geometry into a science that 

climaxed in the axiomatic and definitive treatment 

presented by Euclid (325-265) at the Museum in 

Alexandria in the third century BC.  

 

 

In his textbook, The Elements, he recorded in a 

systematic manner the advances in geometry made 

since the time of Thales. Euclid used five basic 

axioms and from them, with accompanying 

definitions, deduced all that was known in geometry 

in 465 theorems 2 . 

 

To infinity 
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The axiom of most interest to us, which remained controversial until the nineteenth 

century, is the Euclidian parallel (fifth) postulate.  

The definition of parallel states that two straight lines, drawn in the same plane, are 

parallel if they do not intersect.  

The fifth postulate asserts that through any point there is one and only one parallel to a 

given straight line.  

 

For more than 2000 years most persons accepted the fifth postulate as obvious. A few, 

however, including Euclid, confessed uneasiness because the postulate cannot be verified 

by direct appeal to experience. Many geometricians sought for a more basic axiom from 

which the parallel postulate could be derived. But all attempts failed.  

 

1.2 Space and time in the Modern Age 
 

With the decline of the Greek culture, scientific modeling came to a halt. Greek 

learning was preserved by the Arabs, who added further observations to the growing 

volume of scientific data. Some Arab scholars were dissatisfied with Aristotelian physics, 

but no new theories arose in the Middle Age. Thomas Aquinas (1226-1274) and other 

medieval theologians elevated the Ptolemaic cosmology and Aristotelian physics into a 

cornerstone of Christian doctrine. 

Human curiosity cannot be suppressed, however. The rediscovery of the Greek 

scientific thoughts began a transformation in Europe that led eventually to the 

Renaissance. During this period the increased level of literacy and education, the 

rediscovery of ancient scholarly works and the development of printing raised the 

intellectual standards and altered the political climate. The name most popularly 

associated with the championing of this new world view is that of the Italian astronomer 

Galileo Galilei (1564-1642). 

 

Galileo has devoted much of his career to the physics and 

mechanics. In particular, he was intrigued by the motion 

of falling bodies. Aristotle held that the rate of fall 

depends upon the composition of the falling body and of 

the medium through which the body fell. Galileo 

recognized that this idea could be put to the test. He 

carried out his own experiments and made measurements 

in support of his conclusion that all objects fall at the 

same rate, contrary to the Aristotelian claim. The 

limitations of the technology of his time forced him to 

appeal for many of his arguments to thought experiments, 

that is, mental experiments that could, in principle, be 

performed if the technology were available. 

Galileo Galilei (1564- 1642)  

 

 Thus he concluded that all objects must fall at the same rate in the vacuum.  

 

This important observation is called now the equivalence principle and it became the 

basis of the Newton’s theory of gravity and also for Einstein’s theory of relativity. 
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A key rule of mechanics is the law of inertia. The essential break from 

Aristotelian mechanics to modern mechanics is to recognize that force is responsible not 

for motion, but for changes in motion. From this realization, the relativity of uniform 

motion follows. Galileo understood the experimental fact that if everything moves 

together uniformly, such as the furniture and lamps in the interior of a moving ship, then 

it will seem no different from when the ship is at dock.  

Galileo summarized his conclusions in 1632 in a new book entitled “Dialogo de 

due Sisteme Mundi” (Dialogues Concerning the Two Chief World Systems). The book 

cause sensation throughout educated Europe and paved the way for the new paradigm of 

the Universe. It also set the stage for Galileo’s later troubles with the Church. One of his 

political missteps was to place the defense of the Aristotelian cosmology into the mouth 

of Simplicio, an obvious fool 3 . 

Galileo never completely worked out the laws of motion that would replace those 

of Aristotle. That task fell to Isaac Newton. 

 

 

 

Isaac Newton 4 (1642-1726), one of the most illustrious of 

all scientists, gathered together the thoughts of many 

thinkers since the Middle Age. The genius of Newton, 

meditating for many years on the natural philosophy of 

space, time and motion, transformed all previous 

graphical descriptions into mathematical prescriptions. In 

his “Principia Mathematica Philosophiae Naturalis” 

(Mathematical Principle of Natural Philosophy), Newton 

said of space: 

“Absolute space, in its own nature, without relation to 

anything external, remains always similar and 

immovable.” 

Of time, he said:  

“Absolute, true and mathematical time, of itself, and 

from its own nature, flows equally without relation to 

anything external.” 

Isaac Newton (1642-1726)  

 

These thoughts of an absolute space, of a space existing in its own right without 

need of material support, at that time seems contrary to the common sense. But Newton 

believed that he had proof of absolute space.  

Newton’s three laws of motion state: 

 

1. A body continues in a state of rest, or of constant motion in a straight 

line, unless compelled to change that state by an applied force. 

2. The rate momentum changes in time equals the applied force and is in 

the direction of the force. 

3. To every force there exists at the same place and time an equal and 

opposite force.  

 By using these laws, Newton showed that the gravitational attraction between 

any two bodies varies as the inverse square of their separating distance. He also showed 
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that a spherical body exerts a gravitational attraction as if all its mass was concentrated 

at the center of the body and that the natural orbits of the planets are ellipses. The orbits 

of all bodies freely moving in the Sun’s gravitational field are ellipses, parabolas or 

hyperbolas.  

 Newton and Gottfried Leibniz (1646-1716), a German philosopher, independently 

developed the mathematical principles of calculus.   

Absolute space and time were the overarching concept of the Newtonian 

Universe. This was implicit in the Newtonian equation of motion. However, many 

scientists regarded them as wrong.  

Leibniz regarded Newton’s idea as outrageous and asserted:” There is no space 

where there is no matter.”  

The idea of absolute space was vigorously attacked by the Irish philosopher 

George Berkeley (1685-1753) in a work entitled Motion (1721). He stated that a single 

body, in an otherwise empty universe has no measurable motion of any kind. Ideas 

similar to Berkeley expressed Ernst Mach (1838-1916), an Austrian physicist whose 

work deeply influenced Einstein. He explained the inertial force as determined by and 

proportional to the total amount of matter in the universe. Hence the universe of stars is 

responsible for the inertial forces of non-uniform motion.  

 

1.3 Birth of non-Euclidian geometry 

 

While in the 19
th

 century the concepts of absolute space and time dominated the 

physics, a revolution started in the understanding of the mathematical nature of space.  

The famous German philosopher Immanuel Kant (1724-1804) shared the 

prevailing belief that Euclidian geometry is transparently true and no alternative system 

of geometry is conceivable by the human mind. In his basic work Critique of Pure 

Reason he attempted to place Euclidean geometry on a firm basis by arguing that its 

axioms are “a priori” (prior to experience) and “an inevitable necessity of thought.” Kant 

believed that what is unimaginable is automatically impossible.  

But in mathematics and physics what is possible today was unimaginable 

yesterday.  

We know that the parallel postulate is a fundamental statement and cannot be 

reduced to a more basic axiom. It singles out Euclidian space from other possible spaces. 

In Euclidian space the circumference of a circle is   times its diameter and the sum of 

the interior angles of a triangle is equal to two right angles. In other spaces these relations 

are not necessarily true. 

 

The first examples of non-Euclidian spaces were found by Janos Bolyai (1802-

1860) and Nikolai Lobachevski (1793-1856). They form the hyperbolic geometry. 

Another class of geometries-the spherical geometry-was discovered by Georg Bernhard 

Riemann (1826-1866). All these works were based on the remarkable previous 

researches of Karl Friederich Gauss 5  (1777-1855). 

 

 

 



 5 

   

Karl Friederich Gauss 

(1777-1857) 

Nikolai Ivanovich 

Lobachevsky (1793-1856) 

Janos Bolyai (1802-1860) 

 

 

 

 

The non-Euclidean spaces are defined by the        

following postulates: 

 

 

a) in the Euclidian space there is one 

parallel to a straight line  through a given 

point 

 

b) in the spherical space there is no parallel 

to a straight line through a given point.  

   

                                                           c) in the hyperbolic space there are many  

                                                           parallels to a straight line through a given  

point 

 

To explain these geometries, we start with a 

flat surface and lay out a network of 

imaginary lines that form a coordinate 

system. If the coordinates are perpendicular  

to each other, and labeled x  and y , the 

distance s between any two points is given 

by the Pythagorean rule 
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Coordinate systems in flat surfaces. When coordinate lines are perpendicular to 

each other, as are x  and y  or 'x  and 'y  shown in a), the distance between any two 

points is given by the ordinary Pythagorean rule. When coordinates are curvilinear, as 

shown in b), and not necessarily perpendicular, the distance between two adjacent points 

is given by a more general rule involving metric coefficients that vary from point to point 

and depend on the arbitrary coordinates chosen. 

 

   222222 interval) (interval) (interval)  (space yxsyx   

                        

We may use any coordinate system consisting of a network of arbitrarily curved 

lines and the Pythagorean rule becomes 

 

  222 interval) (interval)y   interval (2interval) (interval)  (space yHxGxF  , 

        222 ) (,)y    (,2) (,s)( yyxHxyxGxyxF   

 

where HGF ,, are functions of x and y. An equation of this type, which gives the 

distance between two adjacent points, is known as a metric equation and the functions 

HGF ,, are the metric coefficients. 

The basic mathematical concept describing the deviation from the Euclidian 

geometry is the curvature K . It is defined as  

   triangleof area- trianglea of anglesinterior  of sum  K  

These rules enable us to determine the curvature anywhere in any space of two or more 

dimensions. We have  

 

   Spherical space (closed):  K  is positive 

    

Euclidian space (open): K =0 

    

Hyperbolic space (open): K  is negative 

   

 

Riemann, in his famous inaugural doctoral lecture, “On 

the hypothesis forming the foundation of geometry”, 

generalized the approach to geometry of Bolyai, 

Lobachevski and Gauss. He defined the distance between 

adjacent points by the Pythagorean rule, with arbitrary 

metric coefficients, which vary from place to place. He 

developed the differential equations for the variation of 

the metric coefficients. One of these equations gives us the 

Riemann curvature, which is more general than the 

curvature K . In a two-dimensional curved space the 

curvature has one value. In three-dimensional space it has 

6 components and in a four dimensional space 24.  

 B. Riemann (1826-1866)  

             (a)             (b) 
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Einstein paid to Riemann the tribute: “Only the genius of Riemann, solitary and 

uncomprehended, had already won its way by the middle of the last century to a new 

conception of space, in which space was deprived of its rigidity and in which its power to 

take part in physical events was recognized as possible.” 

 

1. 4 Space and time in relativity 

 

a) Unification of space and time in special relativity 

 

In the 1860’s the British physicist James Clerk Maxwell (1831-1879) developed a 

theory of electricity and magnetism, which showed that these two forces were actually 

manifestations of one “electromagnetic” force. A consequence of Maxwell’s equations 

was that fluctuating, time varying electromagnetic fields traveled through space at the 

speed of light. It soon became clear that this electromagnetic radiation was light itself. 

Waves in matter, such as elastic waves or sound waves, require a medium in which to 

propagate.  

. 

 

 

One of the most important physicists of 

all times, Maxwell unified electricity 

and magnetism in a single theory, 

showing that they are different 

manifestations of the electromagnetic 

field. The four differential equations he 

proposed for the description of the 

electromagnetic field are among the 

greatest achievements in the history of 

science. From these equations Maxwell 

deduced that light is an electromagnetic 

phenomenon in its nature. He also made 

important contributions in astronomy, 

statistical mechanics, thermodynamics, 

heat theory and mathematics.   

James Clerk Maxwell (1831-1879)  

  

In the 19th century scientists concluded that light too traveled through a medium, 

called the luminiferous ether or just the ether. The light waves always move with the 

speed of light relative to the ether.  

 In 1887 Albert Michelson and Edward Morley found that the speed of light is the 

same in all directions on the Earth surface. This was an unexpected result. The Earth 

moves at orbital speed skmv /30  around the Sun and Michelson and Morley expected 

to find that the measured speed of light would be vc   and vc   in opposite directions 

parallel to the Earth’s orbital motion. Instead, they found that the speed of light is the 

same in both directions.  

In principle, it should be possible to detect the motion of the Earth through the 

ether, if the latter exists and is not dragged along with the Earth. The most sensitive 
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search for this relative motion was done at the end of the nineteenth century by 

Michelson and Morley, using the interferometer shown below 6 . 

 
A simplified version of the Michelson interferometer 

The Michelson interferometer is fixed on the Earth. If we imagine the ether to be fixed 

with respect to the Sun, then the Earth (and the interferometer) moves through the ether at 

a speed of 30 km/s, in different directions in different seasons.  

The beam of light from the laboratory source S is split by the partially silvered mirror P, 

inclined 45 degrees to the beam’s direction, in two coherent beams, beam 1 being 

transmitted through P and beam 2 being reflected off P. Then the returning beam 1 is 

partially reflected and the returning beam 2 is partially transmitted by P, back to the 

telescope, where they interfere. The interference is constructive or destructive depending 

on the phase difference of the beams. If 1M  and 2M are very nearly at right angles, a 

fringe system will form in the telescope, consisting of nearly parallel lines. 

Let us compute the phase difference between the beams 1 and 2. This difference can arise 

from two causes: the difference path lengths traveled, 1l  and 2l , and the different speeds 

of travel with respect to the instrument because of the ether wind v. The time for beam 1 

to travel from P to 1M is 

 
22
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1
/v1
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l
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l
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l
t








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To calculate the time for the beam 1 we assumed that light, whose speed in ether is c , 

has an “upstream” speed of vc  with respect to the apparatus and a “downstream” 

speed of vc . The path of beam 2, traveling from P to  2M  and back, is a cross-stream 

path through the ether.    
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The transit time is given by 
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The difference in transit times is 
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where we denoted the dimensionless parameter v c/ by  .  

Suppose that the instrument is rotated through 90 degrees, thereby making 1l the cross-

stream length and 2l the downstream length. If the corresponding times are now 

designated by primes, the same analysis as above gives the transit-time difference as 
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Hence the rotation changes the differences by 
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To obtain the above result we have used the binomial expansions  
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and dropped terms higher than the second order.  

If the optical path difference between the beams changes by one wavelength, for 

example, there will be a shift of one fringe across the crosshairs of the viewing telescope. 

Let N  represent the number of fringes moving past the crosshairs as the pattern shifts. 

Then, if light of wavelength   is used, so that the period of one vibration is 

cT //1   , 
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Michelson and Morley used an optical path length 21 ll   of 22 m, with the two 

arms (nearly) equal, 1111  ll  m. For 7105.5  m and 410 , 

 4.0N , 

or a shift of four-tenths a fringe. 

Michelson and Morley mounted the interferometer on a massive stone slab for 

stability and floated the apparatus in mercury, so that it could be rotated smoothly. In 

order to make the light path as long as possible, mirrors were arranged on the slab to 

reflect the beams back and forth through eight round trips. The fringes were observed 

under a continuous rotation of the apparatus, as a shift as small as 0.01 of a fringe 

definitely could have been detected. Observations were made day and night and during 

all seasons of the year. The experimental conclusion was that there was no fringe shift at 

all. Therefore the experiment showed no indication of any movement of the Earth 

through the ether. 
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Interference pattern from the Michelson-Morley interferometer. The pattern is 

independent on the motion of the Earth in the space. 

A possible explanation of the null result of the Michelson-Morley experiment was 

suggested by Lorentz and Fitzgerald, who advanced the hypothesis that all bodies are 

contracted in the direction of motion relative to the stationary ether by a 

factor 22 /v1 c . But other experiments have shown that this hypothesis is not enough 

to give a full explanation of the null result.  

Therefore from the result of the Michelson-Morley experiment we can firmly 

conclude that  

the velocity of light is independent of the velocity of its source, of the observer, and 

of the nature of light itself. 

 The constancy of c  for all observers, even for observers moving in opposite 

directions at high speed is greatly astonishing. Suppose a space-ship is moving at half the 

speed of light. Relative to that ship light has the same speed c  that it has relative to us. 

 

 

Albert Einstein 7  (1879-1954), a young 

physicist from Berna, Switzerland,  

considered the implications of this 

experimental result, in their full generality. 

He had the audacity and courage to 

abandon the Galilean relativity, and with it 

Newtonian mechanics. 

  He proposed two relativity postulates: 

 

1.  The laws of Nature are the same in all 

 inertial frames of reference. 

 

2.  The speed of light in vacuum is the same 

in all inertial frames of reference. 

Albert Einstein (1879-1955)  

 

Despite their simplicity, the two relativity postulates contain remarkable, even 

incredible, consequences, like time dilation or length contraction. Time intervals, space 
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separation and simultaneity are not absolute. Space and time are relative to the observer 

and a measurement of time depends on space and vice-versa. In the theory of relativity 

we cannot think of “space” and “time” as separate entities. 

 

The idea of space-time was developed by Hermann Minkowski (1864-1909) in 

1908 as a way to unify the mixing of space and time. Intervals of space and time are no 

longer invariant for all observers. Together they form an invariant space-time interval 

 

  222 interval) (spaceinterval) (timeinterval) time-(space    

    

         22222
yyxtcs      

 

Notice that if time is measured in seconds (or years), then the distance is measured in 

light seconds (or light years).       

Space and time are fused together to form a unified four-dimensional space-time 

continuum and, as Minkowski said,  “Henceforth, space by itself and time by itself are 

doomed to fade away into mere shadows, and only a kind of union of the two will 

preserve an independent reality.” 

This interval must be compared with the usual distance between two points 

 
222 interval) (interval) (interval) (space yx   

 

The space-time interval is the same for all observers, independent of their velocity. The 

minus sign (instead of a plus sign), accounts for the results of special relativity. 

 We are accustomed to the idea that the shortest distance between two points is a 

straight line. This is true in ordinary space but not in space-time. Let us consider the light 

cones that are the paths on which light rays travel. In 1 second of time light travels 1 light 

second in space. For a light ray this means 

 

  space of interval timeof interval    

 

and therefore the space-time interval between two events on a light cone is zero. 

 Consider a star at a distance of 1000 light years. Light emitted by this star comes 

to us in 1000 years. No one can disagree that the light has traversed immense intervals of 

space and time. But the space-time interval between the eye and the star is zero! These 

may seem bizarre but it explains why the speed of light is invariant and forms an upper 

limit to all material motion. 

 

b) Geometry and gravitation 

 

After 1909 Einstein started to think about the generalization of the special 

relativity to non-inertial frames and the gravitational force. Although he arrived quickly 

at the physical foundations of what became the general theory of relativity, the 

mathematical representation of the ideas was far from being obvious. Finally, around the 

time of the First World War, his friend Marcel Grossman introduced him to Riemannian 
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geometry. Einstein found his answers there and he published the equations of general 

relativity in 1916 8 . 

 The general theory of relativity- a theory of gravity has two basic principles: 

 

a) The principle of equivalence states that inertial and free-falling systems are entirely 

equivalent. The acceleration of a free-falling laboratory cancels completely the effect of 

gravity, not only dynamically, but also in all conceivable physical experiments.  

 

 
 

The force on Albert, when the elevator is accelerating him, is the same, and has the same 

effect, as his being accelerated by an equivalent gravitational field. 

 If the principle of equivalence is the first stepping-stone to general relativity, the 

second is the realization that geometry and gravity have much in common.   
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Let us consider a large rubber sheet initially flat. Its curvature is everywhere zero 

and it is like the flat space-time that exists far from a star where gravity is practically 

zero.  

In the center of the sheet we now place a heavy ball that produces a large 

depression.  

Far from the central body the surface is still flat and a ball follows a path that is 

almost straight.  

Close to the central body the curvature of the surface is large and a ball bearing in 

motion accelerates in a way analogous to the acceleration of a body in the vicinity of a 

star.  

By altering the initial speed of the ball we can make it describe elliptical-like, 

parabolic-like and hyperbolic-like orbits about the central body. In this way the curvature 

of the surface mimics the properties of gravity. 

 

In Einstein theory of General Relativity the Newtonian Universe with its 

Euclidian geometry and gravitational forces is replaced with a relativistic Universe of 

space-time of varying curvature. The curved orbits of free-falling bodies in Newtonian 

Universe became the straights orbits in the curved space-time of the Einstein Universe. 

 

b) The Einstein equations of General Relativity states that the curvature of the 

space-time is influenced by matter. The deformation of the space-time is related to 

the stress induced by matter. The equations states  

 

matter constant xtime-space of curvature     

  

 We interpret the Einstein equations to mean that curvature is equivalent to gravity. The 

matter of the right side includes all forms of energy (including pressure) that have mass.  

 

A paraphrase of Einstein’s theory (to remember if all else is forgotten) 

 

 

  “Matter tells space-time how to curve… 

  and space-time tells matter how to move.” 
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These are Einstein’s gravitational field equations, with R  the Ricci tensor, g  

the metric tensor and R  the scalar curvature. T is the energy-momentum tensor 

of the matter.  
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