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PHYS 3033 GENERAL RELATIVITY PART I 

Chapter 2 

Special relativity 

A famous Zen story: Two Zen monks were arguing about a flag waving in the breeze, 

and whether it was the flag or the wind that was moving. The Sixth Patriarch of Zen, Hui 

Neng, overheard; "I suggested it was neither, that what moved was their own mind." 1    

2.1 Measurement of length and time 

 

All the measurement processes involve a process of comparison. We compare length 

to some standard length and intervals of time to some standard intervals of time.  In fact 

each and every measurement involves two comparisons. If we wish to measure the length 

of the distance between two points we must align both of the points with the scale marks 

on a measuring road. 

The description of the state of an object depends on the surroundings with respect to 

which it is specified. The surroundings themselves can be specified in terms of the rigid 

bodies around. Any of these rigid bodies, supposed to be extended in all space, together 

with a time recording device, a clock, is said to constitute a reference system or a frame 

of reference. 

  
The melting clocks, painting by Salvador 

Dali 5  (1904-1989) 

 

An artist and a physicist’s view of the frame of reference 

All measurements in space and time must be made with respect to such frames. In 

actual practice, for the purpose of space measurements, we attach a coordinate system to 

the rigid body. In what follows, the location of an object will always be specified by 

using rectangular Cartesian coordinate systems. 

Next, we should consider who actually makes the measurement. According to the 

standard practice the person who makes the measurements is referred as “the observer”.  
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Definition: an observer is an experimenter, who is equipped to make measurements of 

length and time on bodies which are moving, or at rest, relative to his own frame of 

reference. 

An observer has no more information than can be obtained by her or his 

measurements.  

Definition: the rest frame of a body or an observer is the frame of reference in which the 

body or observer is at rest. It is also referred to as the commoving frame 2 . 

Definition: proper measurements are measurements made on a body which are in the 

rest frame of that body. Thus, for example, we speak of proper length and proper time.    

Ideal clocks and ideal measuring roads are postulated not to depend on the acceleration. 

A corollary of this idea is the principle that an accelerated observer makes the same local 

time and distance measurements as an inertial observer momentarily commoving with 

him. 

Definition: A frame of reference in which a body satisfies Newton’s first law is known as 

an inertial frame. 

As the property of a particle which satisfies Newton’s first law is knows as inertia, 

so it is natural to name a frame in which such a state can be observed as an inertial frame. 

An important question is how inertial frames can be realized in practice. It is 

obvious that a rotating coordinate system would not be an inertial frame, as a freely 

moving particle would appear to travel in a curved path. The existence of a curved path 

implies the existence of a force. When we talk of a coordinate system fixed to the Earth, 

it is necessary to remember that the Earth rotates and inevitably the result is that we have 

a non-inertial frame. However, if we want to measure the period of a simple pendulum, 

then a frame fixed to the surface of the Earth is a perfectly adequate inertial frame, with 

the effects of rotation being almost undetectable. 

Let us consider two frames S and S’, as illustrated in the figure. 

 
The frames have the following properties: 

a) They are identical 

b) S’ moves relative to S with speed v 

c) The motion of the origin of S’ is along the x -axis of S 

d) x  and 'x  are co-axial 

e) At 0' tt , the origins O and O’ coincide. 

This set-up is called the standard configuration. It can be extended to any number 

of frames S’, S’’, S’’’,…, with origins moving along the x axis with speeds v, v’, v’’,….  

In order to specify an event, we have to say where it happened and when it happened. 

Then we may consider how the event appears from two different inertial frames of 

reference S and S’. From now on we shall take the two frames to be in the standard 
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configuration. Obviously, there is only the one event, but its coordinates will be different 

in two different frames of reference, thus: 

-in frame S,  tzyxE ,,,point  the    

-in frame S’,  ',',','point  the tzyxE   

It is easy to derive the relations between coordinates in the frames S and S’ in the 

framework of the Newtonian mechanics. Since the time is absolute, we have  

 

tt ' . 

 

For x  and 'x , the relationship between the two coordinates has to take into 

account that the two origins coincided at 0t , and thereafter separated at a speed v. The 

origin of S’ is located at tx v  at time t , and hence the x -direction coordinates are 

related by 

  

xxt  'v , 

 

or 

  

txx v'  . 

 

Thus, collecting all the results for coordinate transformations between the two 

frames, we may summarize the relationship between the two observations of the same 

event as measured in S and S’ in the Newtonian mechanics as follows: 

  

txx v'  ,         

  

.',',' ttzzyy   

 

These are known as the standard Galilean transformations.  

In a general vectorial form they can be written as 

  

trr v'


 .         

 

Consider a particle moving at speed V along the x axis in S. What is its speed 

'V  in S’? Assume that a time t has elapsed from the moment of the beginning of motion. 

The particle has traveled a distance Vt in S and '' tV  in S’, while S’ has traveled a 

distance tv in S. Then it follows that the displacement of the particle in one frame is 

related to its displacement in the other by 

  

tVtVt 'v   

or 

  

v' VV . 
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Thus in the classical Newtonian picture the velocity of any process will depend on 

the frame in which it is measured. The key element in obtaining the transformation law is 

that time is the same in both frames. 

Formally the same result can be obtained by differentiating 'r


 with respect to t : 

 v
' 




dt

rd

dt

rd
, 

or 

 v'


VV , 

where 
dt

rd
V

'
'


  and 

dt

rd
V


  denotes the velocities of the same particle as measured in the 

frames S and S’. 

It is useful to use a fictitious four-dimensional space, on the axes of which are 

marked three space coordinates and the time. In this space events are represented by 

points, called world points. To each particle a certain line corresponds in the four-

dimensional space, called a world line. The points of this line determine the coordinates 

of the particle at all moments of time. To a particle in uniform rectilinear motion there 

corresponds a straight world line. 

 

2.2 Special relativity 

 

By the end of the nineteenth century, there was a general view that physics as a 

subject was complete. The natural philosophy of the Universe was thought to be well 

understood. However, there were some cracks in this façade, which many people at the 

time thought could be patched up, but which were ultimately to turn into large fissures 

which would destroy the whole structure. The result was the intellectual revolution that 

gave us both quantum theory and special relativity.  

There were two particular problems which led to special relativity 3 . 

Problem 1: The laws of propagation of electromagnetic waves (that is, Maxwell’s 

equations) are not Galilean invariant. 

Problem 2: The Michelson-Morley experiment implied that the velocity of light in 

vacuum, c , is independent of the frame of reference. This result violates the Galilean law 

of addition of velocities. 

Faced, like the other physicists of his time, with the need to chose between two 

mutually exclusive choices, that is 

- the correctness of Newton’s law and Galilean invariance on the one hand; and 

- the correctness of Maxwell’s equations and Lorentz invariance on the other; 

Einstein made his choice and enunciated it in the form of two postulates 3 : 

 

Postulate 1: The laws of physics are the same in all inertial reference frames. 

 

Postulate 2: The velocity of light in vacuum is the same in all inertial frames. 

A corollary can be appended to these postulates as follows: 

 

Corollary. No physical experiment can be used to tell whether an inertial frame is 

moving or at rest (with respect to any other frame). 
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2.3 Space-time intervals 

 

We now express the principle of the invariance of the velocity of light in 

mathematical form. For this purpose we consider two standard reference systems S and 

S’ moving relative to each other with constant velocity 4 . 

Let the first event consist of sending out a signal, propagating with the speed of 

light, from a point having coordinates  111 ,, zyx  in the S system, at the time 1t . We 

observe the propagation of the signal in S. Let the second event consists of the arrival of 

the signal at the point   222 ,, zyx  at the moment of time 2t . Since the signal propagates 

with velocity c , the distance covered by it is  12 ttc  . On the other hand the same 

distance is      2

12

2

12

2

12 zzyyxx  . Thus we can write the following 

relation between the coordinates of the two events in the S system: 

 

           .0
2

12

22

12

2

12

2

12  ttczzyyxx  

 

The same two events, i.e. the propagation of the signal, can be also observed from 

the S’ system. Let the coordinates of the first event in S’ be  '1'

1

'

1

'

1 ,,, tzyx  and of the 

second  '

2

'

2

'

2

'

2 ,,, tzyx . Since the velocity of light is the same in both S and S’, we have  

 

        .0
2'

1

'

2

22'

1

'

2

2'

1

'

2

2'

1

'

2  ttczzyyxx  

 

If  1111 ,,, tzyx  and  2222 ,,, tzyx  are the coordinates of any two events in the 

frame S, then the quantity  

  

        ,
2

12

2

12

2

12

2

12

2

12 zzyyxxttcs   

 

is called the interval between these two events. 

Thus from the principle of the invariance of the speed of light it follows that if the 

interval between two events is zero in one coordinate system, then it is equal to zero in all 

other systems. 

If two events are infinitely closed to each other, then the interval ds  between 

them is  

  

.222222 dzdydxdtcds   

 

As we have already shown, if 0ds in one inertial frame, then 0'ds in any 

other system. On the other hand ds and 'ds  are infinitesimals of the same order. From 

these two conditions it follows that 2ds and 2'ds  must be proportional to each other: 
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 ,'22 adsds   

 

where the coefficient a can depend only on the absolute value of the relative velocity of 

the two inertial systems. It cannot depend on the coordinates or the time, since then 

different points in space and different moments in time would not be equivalent, which 

would be in contradiction to the homogeneity of space and time. Similarly, it cannot 

depend on the direction of the relative velocity, since that would contradict the isotropy 

of space. 

Let us consider three reference systems S, S’ and S’’ and let v 1 and v 2 be the 

velocities of systems S’ and S’’ relative to S. Then we have 

  

  2

1

2 'v dsads  ,   2

2

2 ''v dsads  . 

 

Similarly we can write 

 

   ,''v' 2

12

2 dsads   

 

where v 12  is the absolute value of the velocity of S’’ with respect to S’. Comparing these 

relations with one another, we find that we must have  

  

 
 

 .v
v

v
12

1

2 a
a

a
        (1) 

 

But v 12 depends not only on the absolute values of the vectors  v and v 21


but also 

on the angle between them. However, this angle does not appear on the left side of 

formula (1). It is therefore clear that this formula can be correct only if the function 

v)(a reduces to a constant, which is equal to unity according to the same formula. 

Thus  

 

 ,'22 dsds   

 

and from the equality of the infinitesimal intervals there also follows the equality of finite 

intervals: 'ss   . 

Hence we arrived at a very important result:  

 

The interval between two events is the same in all inertial systems of 

reference, that is, it is invariant under transformations from one inertial system to 

any other.  
 

This invariance is the mathematical expression of the constancy of the velocity of 

light. 
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2.4 Timelike and spacelike intervals 

 

Let  1111 ,,, tzyx  and  2222 ,,, tzyx  be the coordinates of two events in a certain 

reference system S. Does there exist a coordinate system S’, in which these two events 

occur at one and the same point in space? 

Let’s introduce first the notation 1212 ttt   and 

     2

12

2

12

2

1212 zzyyxxl  . Then the interval between events in the 

system S is 

  

.2

12

2

12

22

12 ltcs   

 

In S’ the interval is 

  

.2'

12

2'

12

22'

12 ltcs   

 

Because of the invariance of intervals 

  

.2'

12

2'

12

22

12

2

12

2 ltcltc   

 

We want the two events to occur at the same point in the S’ system, that is, we 

require 02'

12 l . Then  

  

.0. 2'

12

22

12

2

12

22

12  tcltcs  

 

Consequently a system of reference with the required property exists if 02

12 s , 

that is, if the interval between the two events is a real number. Real intervals are said to 

be timelike. 

Thus, if the interval between two events is timelike, then there exists a system 

of reference in which the two events occur at one and the same place. The time which 

elapses between the two events in this system is 

  

 .
1 122

12

2

12

2'

12
c

s
ltc

c
t   

 

If two events occur in one and the same body, then the interval between them is 

always timelike, for the distance which the body moves between the two events cannot be 

greater than 12ct , since the velocity of the body cannot exceed c . So we always have 

  

.1212 ctl   

 

Let us now ask whether or not we can find a system of reference in which the 

two events occur at one and the same time. As before, we have for the S and S’ 

systems  
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.2'

12

2'

12

22

12

2

12

2 ltcltc   

 

We want now to have 0'

12 t , so that  

  

.02'

12

2

12  ls  

 

Consequently the required system can be found only for the case when the 

interval 12s between the two events is an imaginary number. Imaginary intervals are 

said to be space-like. 

Thus if the interval between two events is space-like, there exists a reference 

system in which the two events occur simultaneously. The distance between the points 

where the events occur is in this system is 

  

.12

2

12

22

12

'

12 istcll     

 

The division of intervals into space and time-like intervals is, because of their 

invariance, an absolute concept. This means that the time-like or space-like character of 

an interval is independent of the reference system.  

Let us take some event O as origin of time and space coordinates. In other words, 

in the four-dimensional system of coordinates, the axes of which are marked 

),,,( tzyx the world point of the event O is the origin of coordinates. Let us now consider 

what relation other events bear to the given event O.  

For visualization, we shall consider only one space dimension and the time, 

marking them on two axes.  

 
Uniform rectilinear motion of a particle, passing through 0x at 0t is 

represented by a straight line going through O and inclined to the t axis at an angle whose 

tangent is the velocity of the particle. Since the maximum possible velocity is c , there is 

a maximum angle which this line can subtend with the t axis. In the figure the two lines 

representing the propagation of two signals (with the velocity of light) in opposite 

directions passing through the event O (i.e. going through 0x at 0t  are shown. All 



 9 

lines representing the motion of particles can lie only in the regions aOc and dOb. On the 

lines ab and cd ctx  . 

First consider events whose world points lie within the region aOc. For all points 

of this region 0222  xtc . In other words, the interval between any event in this region 

and the event O is timelike. In this region 0t , i.e. all the events in this region occur 

after the event O. But two events which are separated by a time-like interval cannot occur 

simultaneously in any reference system. Consequently it is impossible to find a reference 

system in which any of the events in region aOc occurred before the event O, i.e. at the 

time 0t . Thus all the events in the region aOc are future events relative to O in all 

reference systems. Therefore this region can be called the absolute future relative to O. 

In exactly the same way all events in the region bOd are in the absolute past 

relative to O; i.e. events in this region occur before the event O in all systems of reference.  

Next consider regions dOa and cOb. The interval between any event in this region 

and the event O is spacelike. These events occur at different points in space in every 

reference system. Therefore these regions can be said to be absolutely remote relative to 

O. However, the concepts “simultaneous”, “earlier” and “later” are relative for these 

regions. For any event in these regions there exist systems of reference in which it occurs 

after the event O, systems in which it occurs earlier than O and finally one reference 

system in which it occurs simultaneously with O.  

Note that if we consider all three space coordinates instead of just one, then 

instead of the two intersecting lines of the figure above we would have a cone 

022222  tczyx  in the four-dimensional coordinate system  tzyx ,,, , the axis of 

the cone coinciding with the t -axis.  

 
 

 

This cone is called the light cone. The regions of absolute future and absolute past 

are then represented by the two interior portions of the light cone. 
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Two events can be related causally to each other only if the interval between them is 

time-like; this follows immediately from the fact that no interaction can propagate 

with a velocity greater than the velocity of light.     

 

 

2.5 The Lorentz transformation 

 

Suppose that an event is described by the coordinates ),,,( tzyx  in the system S. 

In another inertial frame S’ the coordinate of the event are )',',','( tzyx . An important 

problem of the theoretical physics is to find the formula of transformation of the 

coordinates from the system S to the system S’. 

 The relativistic transformations can be obtained as a consequence that they leave 

the interval between events invariant. Let us consider that the S and S’ frames are in the 

standard configuration. This means that the y  and z coordinates do not change when 

passing from S to S’.  

 

 
 

Therefore it follows that the transformation must leave unchanged the difference 
222 xtc  , that is, we must have  

     

 .'' 222222 xtcxtc   

 

The most general relation between the coordinates in the two frames of reference 

can be given as 5  

  

 sinh'cosh' ctxx  ,  cosh'sinh' ctxct  .    (2) 

  

The hyperbolic functions xsinh , xcosh , xtanh  and xcoth  are defined as 

2
sinh

xx ee
x


 , 

2
cosh

xx ee
x


 , 

x

x
x

cosh

sinh
tanh   and 

x

x
x

sinh

cosh
coth  , respectively. 

The functions  xsinh  and xcosh  satisfy the basic relation 1sinhcosh 22  xx . 

 

Exercise. Show that the four-dimensional interval is invariant with respect to the 

transformations (2). 



 11 

 

Let us consider the motion, in the S system, of the origin of the S’ system. Then 

0'x and formulas (2) take the form 

  

sinh'ctx  , cosh'ctct  . 

  

Dividing one by other we obtain 

  

tanh
ct

x
. 

 

But 
t

x
 is clearly the velocity v of the system S’ with respect to S. Hence 

 .
v

tanh
c

  

From this, by using the properties of the hyperbolic functions, we obtain 

 

2

2v
1

v

sinh

c

c



 , 

2

2v
1

1
cosh

c


 . 

Substituting in (2) we find 

 

2

2v
1

'v'

c

tx
x




 , 'yy  , 'zz  , 

2

2

2

v
1

'
v

'

c

x
c

t

t





 .    (3) 

Equations (3) are called the Lorentz transformations and are of fundamental importance 

in physics. 

.  

 

Born in Arnhem, Netherlands, in 1853, Lorentz was a 

professor at the Leyden University. He refined Maxwell’s 

electromagnetic theory. Before the existence of electrons 

was proved, Lorentz proposed that light waves were due to 

oscillations of an electric charge in the atom. For his 

mathematical theory of the electron he received the Nobel 

Prize in 1902. Lorentz is also famed for his work on the 

Fitzgerald- Lorentz contraction, which is a contraction in the 

length of an object at relativistic speeds. Lorentz 

transformations, which he introduced in 1904, form the 

basis of Einstein's special theory of relativity.   

H. A. Lorentz (1853-

1928) 

 

 

http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/FitzGerald.html
http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Einstein.html
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The inverse formulas, expressing )',',','( tzyx  as a function of ),,,( tzyx are obtained by 

changing v to –v in Eqs. (3). This is because the system S moves with velocity –v relative 

to the S’ system. Therefore we obtain  

 

2

2v
1

v
'

c

tx
x




 , yy ' , zz ' , 

2

2

2

v
1

v

'

c

c

x
t

t





 .    (4) 

For velocities v small compared with the velocity of light, we obtain 

  

txx v'  , yy ' , zz ' , tt ' .      (5) 

 

Eqs. (4) represent the Galilean transformations of coordinates. 

The equations (4) representing the Lorentz transformations can be written in a matrix 

form as  

 

 LXX ' , 

 

where  

 























'

'

'

'

'

z

y

x

ct

X , 























z

y

x

ct

X , 

and  

 

 



























1     0       0        0   

0     1       0        0   

0     0            
v

-

0     0     
v

-       





c

c

L , 

where we denoted 

2

2v
1

1

c


 . 

The inverse transformation is given by 

 

 '1 XLX  , 

 

where 1L is the inverse of the matrix L , with the property ILLLL   11 ( I  is the 

unity matrix), and with elements given by 
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

























1     0       0        0   

0     1       0        0   

0     0            
v

 

0     0     
v

        

1 



c

c

L . 

 

Exercise. Find the form of the inverse of the matrix L  describing the Lorentz 

transformations. What is the value of the determinant of L ? 

 

Finally, we mention another general property of the Lorentz transformations, 

which distinguishes them from Galilean transformations. The latter have the general 

property of commutativity, i.e. the combined result of two successive Galilean 

transformations (with different velocities v 1  and v 2 ) does not depend on the order 

in which the transformations are performed. On the other hand, the result of two 

successive Lorentz transformations does depend, in general, on their order.    
 

2.6 Transformation of velocities 

 

Suppose that the S’ system moves relative to S with velocity v along the x axis. 

Let dtdxu x /  be the component of the particle velocity in the S system and 

'/'' dtdxu x   the velocity component of the same particle in the S’ system. From the 

Lorentz transformations (3) we obtain 

 

2

2v
1

'v'

c

dtdx
dx




 , 'dydy  , 'dzdz  , 

2

2

2

v
1

'
v

'

c

dx
c

dt

dt





 .  

Dividing the first equation by the fourth and introducing the velocities dtrdu /


  and 

'/'' dtrdu


  we find 

 

2

'

'

v
1

v

c
u

u
u

x

x

x




 , 

2

'

2

2
'

v
1

v
-1

c
u

c
u

u

x

y

y



 , 

2

'

2

2
'

v
1

v
-1

c
u

c
u

u

x

z

z



 . 

These formulas determine the transformation of velocities. In the limiting case 

c they go over into the formulas of the classical mechanics. In the special case of 

the motion of a particle parallel to the x -axis uu x  , 0 zy uu . Then 0''  zy uu , 

'' uu x  , so that 

 

2

v
'1

v'

c
u

u
u




 . 
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It is easy to convince oneself that the sum of two velocities each smaller or equal than the 

velocity of light is again not greater than the light velocity. 

 

Exercise. Derive the law for time dilation in special relativity. 

 

Exercise. Derive the law for length contraction in special relativity. 

 

Notes 

 
1 Hui Neng (638-713), who became the great Sixth Patriarch of Ch'an (Japanese Zen) was 

born in Guangzhou, China. His most important work is The Sutra of Hui Neng. More 

information on Hui Neng can be found on the website www.theosociety.com. 

 
2 The definitions of the frame of reference, observer, standard frame and events follow 

the definitions in W. D. McComb, Dynamics and relativity, Oxford, Oxford University 

Press, 1999. 
3 For a discussion of the physical basis of special relativity see W. D. McComb, 

Dynamics and relativity, Oxford, Oxford University Press, 1999, R. Resnick and D. 

Halliday, Basic concepts in relativity and early quantum theory, New York, McMillan 

Publishing Company, 1992 and E. F. Taylor and J. A. Wheeler, Space-time physics, New 

York, W. H. Freeman and Company, 2001. 
4 The presentation of the properties of the interval is based on the similar discussion in L. 

D. Landau and E. M. Lifshitz, The classical theory of fields, Oxford, Butterworth-

Heinemann, 1998. 
5  Detailed derivations of the Lorentz transformations are also presented in W. D. 

McComb, Dynamics and relativity, Oxford, Oxford University Press, 1999, R. Resnick 

and D. Halliday, Basic concepts in relativity and early quantum theory, New York, 

McMillan Publishing Company, 1992 and E. F. Taylor and J. A. Wheeler, Space-time 

physics, New York, W. H. Freeman and Company, 2001; at a qualitative level the 

consequences of the Lorentz transformations are discussed in E. F. Taylor and J. A. 

Wheeler, Space-time physics, New York, W. H. Freeman and Company, 2001 and W. 

Thomas Griffith, The physics of everyday phenomena, New York, McGraw Hill 2001.  
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