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PHYS 3033 GENERAL RELATIVITY PART II 

Chapter 5 

The physical basis of the general theory of relativity 

 

“I was sitting in a chair in the patent office at Berne,     

when all of a sudden a thought occurred to me: if a 

person falls, he will not feel his own weight”  

      Albert Einstein 

Years later, Einstein was to say that this was “the 

happiest thought of my life” 

 

5.1 The concept of mass 

 

Mass arises naturally from Newton’s second law of motion. For a given body 

we can measure its acceleration (assuming only that we can readily measure length and 

time) and hence the force acting on it in terms of its mass. The relation between mass 

and force is given by rmF 

 .  

Although it is quite usual to refer to the scalar coefficient m in this relation as the 

mass, strictly speaking, what we detect when we apply a force to a body is its inertia. 

The second approach to a more quantitative definition of the mass of a body 

is through Newton’s law of universal gravitation. This law states that the gravitational 

force between two bodies of mass m and M separated by a distance r is
2r

mM
GF  . 

Therefore according to Newton’s second law the equation of motion of the 

particle of mass m in the field created by the particle of mass M is 

  

22

2

r

mM
G

dt

rd
m  .       (1) 

 

We must now ask: is it correct to cancel the mass m in Eq. (1)? Are the m ’s in 

both sides really the same? The mass that appears on the left side of Eq. (1) is the 

inertial mass.  

For any arbitrary body, the inertial mass is defined as follows 1 : we take the body 

and let it interact, somehow, with a standard inertial mass (one kilogram).  

Both the body and the standard will accelerate towards or away from one another. 

Designating the acceleration of the body and of the standard by a and sa , respectively, 

we can define the inertial mass by  

  

a

a
m s

i  . 

 

The gravitational mass can be defined in a similar manner. We take a standard 

object and define its gravitational mass to be one unit; for convenience we will use the 

standard kilogram as a standard for both inertial and gravitational mass.  
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We now place the body at some distance r and let it interact gravitationally with 

the standard. The body will accelerate towards the standard. We define the gravitational 

mass of the body in terms of this acceleration and the distance between the objects: 

  

G
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m i

r
G

2

lim
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 . 

 

Alternatively, using 
a

a
m s

i   we can write this as 

  

G

ra
m s

r
G

2

lim


 . 

 

This gives the gravitational mass in kilograms.  

The limiting procedure r  is needed in order to eliminate the effects of 

multipole fields, which depend on the mass distribution of the two bodies. Also, 

proceeding to the limit r  eliminates the effect of shorter range forces (nuclear force, 

Van der Waals force etc.).  

At large distances only the gravitational and electrostatic forces will remain, but 

the latter can be eliminated by taking the precaution of keeping the standard body 

neutral.  
If we take two identical copies of the standard mass and let them fall towards each 

other, the acceleration of each serves to define the constantG : 

  

 2lim raG ss
r 

 . 

 

With these precise definitions of im and Gm  it is clear that the gravitational force 

between two particles is 

  

2r

Mm
GF GG , 

 

and the equation of motion is 

  

22

2

r

Mm
G

dt

rd
m GG

i  . 

 

 

Whether all particles fall in the gravitational field of the particle of mass GM  

with the same acceleration depends on whether all particles have the same value 

of
G

i

m

m
.  
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If this ratio is a universal constant, it must have the value one (the standard body 

has this value by definition). The question is then, is the equation  

  

Gi mm   , 

 

satisfied for all bodies?  

 

This is a question which can be answered only by experimental means. 

 

5.2 The principle of equivalence 

 

 

At the end of the 16
th

 century, Galileo Galilei demonstrated that 

the speed of falling bodies is not proportional to their weight, 

throwing two spheres (one of lead and one of cork, the former being 

more than one hundred times as heavy as the latter) from the 

leaning tower of Pisa: the surprised audience had to admit that in 

spite of their different weights, the two objects with different 

masses reached the ground at the same time. Four centuries later, 

this experiment would still disconcert people.  

 

The first careful experiments specifically designed to test the equality of inertial 

and gravitational mass are due to Newton.  

The most precise results have been obtained with torsion balances, which have 

been used for the first time to check the equality of the inertial and gravitational mass at a 

very high level of precision by Eotvos. 

 

 

Lóránd Eötvös (1848-1919) studied at Heidelberg and 

received a doctorate with a thesis which studied problems 

proposed by Fizeau on the relative motion of a light source. 

This was one of the first steps towards relativity theory. 

Eötvös went back to Hungary in 1871. He taught at the 

University of Budapest from 1871 and he became professor 

of experimental physics in 1878. He published on capillarity 

between 1876 and 1886. For the rest of his life he published 

on gravitation He invented the Eötvös balance and showed 

that, to a high degree of accuracy, gravitational mass and 

inertial mass are equivalent. Eotvos work was highly praised 

by Einstein, who wrote: “Eotvos is the last classic of the 

classical physics.”   

L .Eotvos (1849-1919)  
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In the Eotvos experiment 2  two pieces of 

matter, labeled weight, are attached to the 

arms of a torsion balance. These weights are 

made of different substances, e. g. platinum 

and copper. If Gi mm /  has a different value 

for the two substances, then a torque will be 

exerted on the balance. The forces are of 

two kinds: there is the gravitational force 

gmG


 exerted by the Earth and the 

centrifugal pseudo-force ami


 produced 

by the rotation of the Earth; the quantity 

g


is the acceleration of gravity and a


 is the 

centrifugal acceleration due to Earth 

rotation at the locality of the experiment. 

 

 

 
The beam of the balance points in the east-west direction: the centrifugal force 

has a vertical (opposite to g


component) ziam  and a horizontal component xiam .  

The torque about the z axis is  

  

'' lamlam xixi  . 

 

We can eliminate 'l  by using the equilibrium condition for rotation about the x -

axis, 

  

    ''' lamgmlamgm ziGziG  , 
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and obtain  
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From this it is obvious that a torque exists only if 
i

G

i

G

m

m

m

m


'

'

. In equilibrium, the 

gravitational torque is compensated by a torque produced by the suspension fiber.  

The presence of the gravitational torque can be detected by rotating the 

entire apparatus by exactly 180  about the vertical axis. If the equilibrium position of 

the beam was exactly along the east-west direction before this rotation, then it will be 

slightly off after the rotation: this change in equilibrium position occurs because 

turning the apparatus around changes the sign of the torque.  

Eotvos’s experiment has shown that  

 

9103 


i

Gi

m

mm
. 

 

Many other very precise experiments have tested the ratio Gi mm /  for a wide 

variety of materials, with a precision as high as 1310 .  

If we go further and assert that the two kinds of mass are actually the same, then 

we can formulate the following formal statement, called the Principle of equivalence: 

 

The principle of equivalence states that inertial mass equals gravitational mass. 

 

5.3 Einstein’s lift experiment; the relativistic equivalence principle 

 

The equality of the inertial and gravitational mass led Einstein to suggest 

that gravity is in some sense an inertial force. That is, he postulated that the 

gravitational force was an effect which arose from the use of a non-inertial frame.  
In a paper published in 1914 Einstein discussed a series of thought experiments, 

which are sometimes referred as the lift experiments. As these experiments are no 

longer thought experiments, having actually being carried out, we shall think of an 

experimenter in a rocket ship, rather than in a lift 3 . The essential feature is that the 

experimenter can only observe the behavior of a test mass inside the rocket ship. In 

each of these cases we take the inertial frame S to have its origin at the centre of the 

Earth and its acceleration determined by the fixed stars. When the rocket is accelerating 

its frame is denoted by 
'

aS  and when it is moving at a constant speed with respect to 

S it is denoted S’. 
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We begin with the rocket before take-off, when it is still at rest on the Earth. 

The experiment consists of releasing the test mass and allowing it to fall to the floor. 

The experimenter measures its acceleration and finds to be g , the local acceleration 

due to gravity.  Now the rocket takes off. At some later time it is a long way from the 

Earth, and is moving at a constant speed relative to S. Under these circumstances, 

when the observer releases the rest mass, it remains where it was released. In both S 

and S’ the rest mass has no net forces acting on it. In S it moves uniformly with S’, while 

in S’ it is at rest.  

Next we consider the case where the rocket motors have been switched on, and it 

accelerates at a uniform rate a . It is still a long way from the Earth, so that Earth’s 

gravity can still be neglected. To an observer in S the floor of the ship accelerates 

towards the test mass when the experimenter releases it. However, to the observer in 
'

aS  the mass appears to accelerate towards the floor, as if under the influence of a 

force of magnitude ma .  

Lastly, we imagine that the rocket is now in free fall back to Earth and is close 

enough for the Earth’ gravitational field to affect it. To an observer in the Earth’s frame S, 

the rocket, experimenter and test mass all appear to be falling to Earth with 

acceleration g . However, to the experimenter in the rocket the test mass remains 

motionless and he concludes that no forces are acting on it. 
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Let the non-inertial frame '

aS  move with constant acceleration a in the direction 

of the negative z axis of S.  
The two coordinates at right angles to the motion are of course unaffected and 

thus 

  

'xx  , 'yy  . 

 

Assuming for simplicity that 'tt  , the transformations in the z direction are 

  

2
'

2at
zz  ,  

 

at
dt

dz

dt

dz


'
 

 and  

 

a
dt

zd

dt

zd


2

2

2

2 '
. 

 

In S Newton’s second law is just 

 

F
dt

zd
m 

2

2

. 

 

In '

aS , using the acceleration transformation we obtain Newton’s second law in 

the form 

  

maF
dt

zd
m 

2

2 '
. 
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If the experimental apparatus (a box, say) which defines '

aS  is in free fall towards 

the Earth, then the gravitational force inside the box is cancelled by the inertial force ma . 

That is  

  

mamg
dt

zd
m 

2

2 '
, 

 

and ga   for '

aS  in free fall. Therefore a particle in a box experiences no force (or 

acceleration) relative to the box. However, if we move the box to some region of the 

universe where there is no gravitational force, and accelerate it with ga  , then 

every particle in the box will experience an apparent force of magnitude mg in the 

direction of z . 

The overall conclusion from these experiments must be that the experimenter in 

the rocket is unable to tell whether forces acting on the test mass are due to gravity 

or to some inertial forces. The observer in S can tell, but she/he is in a privileged 

position, being completely outside the non-inertial frame which is under consideration. 

Considerations of this kind led Einstein to the idea that perhaps gravity was also 

an inertial force.  
Einstein’s conclusion was formulated as the principle of equivalence.  

 

The Principle of equivalence states that a frame undergoing constant 

acceleration is locally indistinguishable from a frame at rest or in uniform motion in 

a gravitational field. 

 

This is known as the weak form of the principle of equivalence. We restrict the 

acceleration to constant acceleration and a region to a local region over which the 

gravitational effects have no spatial inhomogeneity. 

The principle of equivalence can also be restated as 

 

No local experiment can distinguish between the free fall of a body in a 

gravitational field and the uniform motion of the same body in the absence of a 

gravitational field. 
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5.4 The necessity for a curved metric 

 

 

Let us consider two reference frames, of which 

one (S) is inertial, while the other (S’) rotates 

uniformly with respect to S around their 

common z axis. A circle in the yx,  plane of 

the S system (with its center at the origin) can 

also be regarded as a circle in the ',' yx  plane 

of the S’ system. Measuring the length of the 

circle and its diameter with a yardstick in S 

system we obtain values whose ratio is  , in 

accordance to the Euclidian character of the 

geometry in the inertial reference system. Now 

let the measurement be carried out with a 

yardstick at rest relative to S’. Observing this 

process from the S system, we find that the 

yardstick laid along the circumference 

suffers a Lorentz contraction, whereas the 

yardstick placed radially is not changed. It 

is therefore clear that the ratio of the 

circumference to the diameter, obtained 

from such a measurement will be greater 

than .   

 

In an inertial reference system, in Cartesian coordinates, the interval ds is given 

by the relation 

 

 222222 dzdydxdtcds  . 

 

Upon transforming to any other inertial reference system (i.e. under Lorentz 

transformations), the interval retains its form. However, if we transform to a non-

inertial frame of reference, 
2ds  will be no longer the sum of squares of the four 

coordinate differentials. 
Hence, for example, when we transform to a uniformly rotating system of 

coordinates, 

 

 tytxx  sin'cos'  , tytxy  cos'sin'  , 'zz  , 

 

where  is the angular velocity of the rotation, directed along the z axis, 

the interval takes on the form 

  

   dtdyxdtdxydzdydxdtyxcds ''2''2''''' 222222222   . 
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No matter what the law of transformation of the time coordinate is, this 

expression cannot be represented as a sum of squares of the differentials of the 

coordinates. 

 Thus in a non-inertial system of reference the square of an interval appears as a 

quadratic form of general type in the coordinate differential 4 , that is, it has the form 

  
ki

ik dxdxgds 2 ,       (1) 

 

where the ikg  are certain functions of the space coordinates 321 ,, xxx  and of the time 

coordinate 0x .  

Thus, when we use a non-inertial system, the four-dimensional coordinate system 

 3210 ,,, xxxx  is curvilinear. The quantities ikg  determining all the geometric 

properties in each curvilinear system of coordinates represent the space-time metric. 

The quantities ikg  can clearly always be considered symmetric in the indices 

i and k ,  

 

kiik gg  ,  

 

since they are determined from the symmetric form (1), where ikg  and kig enter as 

factors of one and the same product kidxdx . In the general case there are ten different 

quantities ikg , four with equal and 6 with different indices. In an inertial reference system 

with coordinates  zxyxxxctx  3210 ,,, , the quantities ikg  are 

  

100 g , 1332211  ggg , 0ikg  for ki  . 

 

Such a four-dimensional system of coordinates is also called Galilean.  

Any gravitational field is just a change in the metric of space-time, as 

determined by the quantities ikg .  

This important fact means that the geometrical properties of the space-time (its 

metric) are determined by physical phenomena and are not fixed properties of space and 

time. 

 

The theory of gravitational fields, constructed on the basis of the theory of 

relativity, is called the general theory of relativity.  

 

In the general case of an arbitrary, varying gravitational field, the metric of the 

space is not only non-Euclidian, but also varies with time. This means that the relation 

between different geometrical distances change with time. As a result, the relative 

position of test bodies introduced into the field cannot remain unchanged in any 

coordinate system. Thus in the general theory of relativity it is impossible in general to 

have a system of bodies which are fixed relative to each other. 

In connection with the arbitrariness of the choice of a reference system, the 

laws of nature must be written in the general theory of relativity in a form which is 
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appropriate to any four-dimensional system of coordinates. In other words the laws of 

nature must be written in a covariant form 5 . This, of course, does not imply the 

physical equivalence of all these reference systems (like the physical equivalence of all 

inertial reference frames in the special theory of relativity). On the contrary, the specific 

appearances of physical phenomena, including the properties of the motion of the bodies, 

become different in all systems of reference.    

 

Notes 

 
1
The definition of the inertial and gravitational mass follows the definitions in H. C. 

Ohanian, Gravitation and spacetime, W. W. Norton and Company Inc., New York, 1976. 
2 The discussion of the Eotvos experiment is based on H. C. Ohanian, Gravitation and 

spacetime, W. W. Norton and Company Inc., New York, 1976; other experiments testing 

the equality of the inertial and gravitational mass are described in I. R. Kenyon, General 

Relativity, Oxford University Press, Oxford, 1990 and S. Weinberg, Gravitation and 

cosmology: principles and applications of the general theory of relativity New York, 

Wiley, 1972. 
3 The rocket thought experiment is also discussed in I. R. Kenyon, General Relativity, 

Oxford University Press, Oxford, 1990. 
4 For the necessity of the introduction of a curved metric see also S. Weinberg, 

Gravitation and cosmology: principles and applications of the general theory of relativity 

New York, Wiley, 1972; L. D. Landau and E. M. Lifshitz, The Classical theory of fields,  

Oxford, Pergamon Press, 1971 and Ya. B. Zeldovich and I.D. Novikov, Stars and 

relativity,  Mineola, N.Y., Dover Publications, 1996. 
5 Critical discussions of the physical basis of the general theory of relativity are given in 

V. A. Fock, The theory of space, time and gravitation, New York, Pergamon Press, 1959 

and R. P. Feynman, Lectures on gravitation, Pasadena, California Institute of Technology, 

1971. 

 

 

 

 

       

   


