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PHYS 3033 GENERAL RELATIVITY PART II 

Chapter 7 

Space and time in general relativity 

“I wish to show that space-time is not necessarily 

something to which one can ascribe a separate existence, 

independent of the actual objects of physical reality. 

Physical objects are not – in space – but these objects are – 

spatially extended -. In this way the concept – empty space 

– loses its meaning.” 

       A. Einstein 

 

7.1 Distances and time intervals 

 

As in non-relativistic mechanics, in general relativity there is a fundamental 

difference between actual gravitational fields and fields to which non-inertial 

reference systems are equivalent 1 . [ 1  For a discussion of the relation between the field 

and geometrical aspects of gravity see V. A. Fock, The theory of space, time and 

gravitation, New York, Pergamon Press, 1959 and R. P. Feynman, Lectures on 

gravitation, Pasadena, California Institute of Technology, 1971.]   Upon transforming to a 

non-inertial reference frame the quantities ikg  are obtained from their Galilean values by 

a simple transformation of coordinates, and can be reduced over all space to their 

Galilean values by the inverse coordinate transformation. That such forms for ikg  are 

very special is clear from the fact that it is impossible by a mere transformation of the 

four coordinates to bring the ten quantities ikg  to a pre-assigned form. 

An “actual” gravitational field cannot be eliminated by any transformation 

of coordinates. In other words, in the presence of a gravitational field space-time is 

such that the quantities ikg  determining the metric cannot, by any coordinates 

transformation, be brought to their Galilean values over all space. Such a space-time 

is said to be curved, in contrast to the flat space-time, where such a reduction is possible.  

By an appropriate choice of coordinates we can, however, bring the 

quantities ikg  to Galilean form at any individual point of the curved (non-Galilean) 

space-time; this amount to the reduction to diagonal form of a quadratic form with 

constant coefficients (the values of ikg  at the given point).  Such a coordinate system 

is called Galilean for the given point. 

[Note: The Galilean transformation is used to transform between the 

coordinates of two reference frames which differ only by constant relative motion within 

the constructs of Newtonian physics. This is the passive transformation point of view. 

The equations below, although apparently obvious, break down at speeds that approach 

the speed of light owing to physics described by relativity theory.] 

After reduction to diagonal form at the given point, the matrix of the quantities 

ikg  has one positive and three negative principal values (this set of signs is called the 

http://en.wikipedia.org/wiki/Reference_frames
http://en.wikipedia.org/wiki/Newtonian_physics
http://en.wikipedia.org/wiki/Active_and_passive_transformation
http://en.wikipedia.org/wiki/Speed_of_light
http://en.wikipedia.org/wiki/Special_relativity
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signature of the matrix). From this it follows that the determinant g, formed from the 

quantities ikg , is always negative for a real space-time: 

 

 0g . 

 

A change in the metric of the space-time also means a change in the purely spatial 

metric. To a Galilean ikg  in flat space-time there corresponds a Euclidian geometry 

of space. In a gravitational field, the geometry of space becomes non-Euclidian. This 

applies both to true gravitational fields, in which space-time is curved, as well as to fields 

resulting from the fact that the reference system is non-inertial. 

In general relativity the choice of the system of coordinates is not limited in 

any way; the triplet of space coordinates 321 ,, xxx  can be any quantities defining the 

position of bodies in space, and the time coordinate 0x  can be defined by an arbitrary 

running clock. The question arises of how, in terms of the values of the quantities 0x  

and 321 ,, xxx , we can determine actual distances and time intervals 2 .  

First we find the relation between the proper time, which from now on we shall 

denote by   , to the coordinate 0x .  

To do this we consider two infinitesimally separated events, occurring at one and 

the same point in space. Then the interval ds between the two events is just cd , where 

d  is the proper time interval between the two events. Setting  0321  dxdxdx  in 

the general expression ki

ik dxdxgds 2  we find 

 

  20

00

222 dxgdcds   , 

 

or 

0

00

1
dxg

c
d  . 

 

Hence, for the time between any two events occurring at the same point in space 

we obtain 

 

  0

00

1
dxg

c
 . 

 

This relation determines the actual time interval (or as it is also called, the proper 

time for the given point in space) for a change of the coordinate 0x . The quantity 00g , as 

we see from these formulae, must be positive: 

 

 000 g . 
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Non-fulfillment of this condition means that the corresponding system of 

reference cannot be realized with real bodies. But if the condition on the principal 

values is fulfilled, then a suitable transformation of the coordinates can make 00g  positive. 

We now determine the element dl of the spatial distance. In the special theory of 

relativity we can define dl as the interval between two infinitesimally separated 

events occurring at one and the same time. In the general theory of relativity, it is 

usually impossible to do this, i.e., it is impossible to determine dl by simply setting 

00 dx in ds .  

This is related to the fact that in a gravitational field the proper time at 

different points in space has a different dependence on the coordinate 0x . 

To find dl we proceed as follows. 

 

 

Suppose a light signal is directed from some point B 

in space (with coordinates  dxx  ) to a point A 

infinitely near to it, having coordinates x , and then 

back over the same path. Obviously, the time (as 

observed from the point B) required for this, when 

multiplied by c , is twice the distance between the 

two points.  

 

 

Let us write the interval, separating the space and time coordinates: 

 

  20

00

0

0

2 2 dxgdxdxgdxdxgds  



 , 

 

where it is understood that we sum over repeated Greek indices from 1 to 3. The interval 

between two events corresponding to the departure and arrival of the signal from one 

point to the other is equal to zero. [Note; expand ji

ij dxdxgds 2 for i,j varying from 0 to 

3] 

Solving the equation 02 ds  with respect to 0dx we find two roots: 

 

   



 dxdxggggdxg

g
dx 00000

00

)1(0 1
 , 

 

    



 dxdxggggdxg

g
dx 00000

00

)2(0 1
 , 

 

corresponding to the propagation of the signal in the two directions between A and B.  

If 0x  is the moment of arrival of the signal at A, the times when it left B and 

when it will return to B are )1(00 dxx  and )2(00 dxx  , respectively. In the diagram the 

solid lines are the world lines corresponding to the spatial coordinates x  and  dxx  , 

while the dashed lines are the world lines of the signals.  
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It is clear that the total interval of “time” between the departure of the signal and 

its return to the original point is equal to  

 

   
 dxdxgggg

g
dxdx 0000

00

)1(0)2(0 2
 . 

 

The corresponding interval of proper time is obtained by multiplying by 

cg /00 and the distance dl between the two points by multiplying once more by 2/c . 

As a result, we obtain 

 

 

 dxdx
g

gg
gdl 












00

002 . 

 

This is the required expression, defining the distance in terms of the space 

coordinate element. We rewrite it in the form 

 

 
 dxdxdl 2 ,        (1) 

 

where 

 

 
00

00

g

gg
g



  ,       (2) 

 

is the three-dimensional metric tensor, determining the metric, i.e., the geometric 

properties of the space. Eqs. (2) give the connection between the metric of the real space 

and the metric of the four-dimensional space-time. 

The ikg  generally depend on 0x , so that the space metric (1) also changes with 

time. For this reason it is meaningless to integrate dl ; such an integral would depend 

on the world line chosen between the two given space points.  

Thus, in general theory of relativity, the concept of a definite distance 

between bodies loses its meaning, remaining valid only for infinitesimal distances. 

The only case where the distance can be defined over a finite domain is that in which the 

ikg  do not depend on the time, so that the integral  dl along a space curve has a definite 

meaning. 

The tensor  is the reciprocal of the contravariant three-dimensional tensor 

g . From i

lkl

ik gg   we have, in particular, 

 

 





  0

0 gggg ; 000

0

0  gggg 


 ; 100

00

0

0  gggg 
 . 

 

[Hint 1,,0 itisandifif 



 ] 
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Determining 0g from the second equation and substituting in the first we obtain 






























][
00

00

00

00

g

gg
gg

g

ggg
gg

  (edited original MS)  

Which gives  

 

 


   g .                    …………………………….(Imp) (2.1a) 

 

This result can be formulated differently, by the statement that the quantities 
g  form the contravariant three-dimensional metric tensor corresponding to the 

metric (2): [ 





   /g  hence] 

  g .                                                                                       (2.2) 

 

The determinants g and  , formed respectively from the quantities ikg  and   

are related to one another by 

 

 00gg  .   (see foot note*
1
) 

 

In some of the later applications it will be convenient to introduce the three-

dimensional vector g


, whose covariant components are defined as 

 

 
00

0

g

g
g 
  .                         

 

Considering g


as a vector in the space with metric (2) [i.e 
00

00

g

gg
g



  ], 

we must define its contravariant components as 

 

 


  0ggg  .  (edit?) 

                                                 

*
1
 From  where I,j=0,1,..3 and  we get 

 
Which gives on solving RHS 

      which gives the results QED 
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We also have the formula 

 

 
 gg

g
g

00

00 1
 . (see foot note

2
) 

 

We now turn to the definition of the concept of simultaneity
3
 in the general 

theory of relativity. In other words, we discuss the question of the possibility of 

synchronizing clocks located at different points in space, i.e. the setting of a 

correspondence between the readings of such clocks. 
Such synchronization must obviously be achieved by means of an exchange of 

light signals between the two points.  

We again consider the process of propagation of signals between two infinitely 

near points A and B. We should regard as simultaneous with the moment 0x  at the 

point A that reading of the clock at point B which is half-way between the moments 

of departure and return of the signal to that point, i.e. the 

moment  
 

  )2(0)1(0000

2

1
dxdxxxx  . 

[ copied from previous papges 

  



 dxdxggggdxg

g
dx 00000

00

)1(0 1
  

  



 dxdxggggdxg

g
dx 00000

00

)2(0 1
  

] 

Substituting the corresponding expressions for )1(0dx  and )2(0dx  we find that the 

difference in the values of the time 0x  for two simultaneous events occurring at infinitely 

near points is given by 

 

                                                 
2
  

 
 
3
 This concept was first suggested by Galilio 
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 



 dxg
g

dxg
x 

00

00 . 

 

This relation enables to synchronize clocks in any infinitesimal region of space. 

Carrying out a similar synchronization from the point A, we can synchronize clocks, i.e 

we can define simultaneity of events along an open curve. 

However, synchronization of clocks along a closed contour turns out to be 

impossible in general. In fact, starting out along the contour and returning to the initial 

point we would obtain for 0x  a value different from zero. Thus it is impossible to 

synchronize clocks over all space. The exceptional cases are those reference systems in 

which all the components 0g are equal to zero. 

It should be emphasized that the impossibility of synchronization of all clocks 

is a property of the arbitrary reference system and not of the space-time itself. In 

any gravitational field, it is always possible (in infinitely many ways) to choose the 

reference system so that the three quantities 0g  become identically equal to zero, and 

thus make possible a complete synchronization of clocks.[Note by editir: because 

0g depends on the curvature of space coordinates and hence depend on transformation 

from one system to other.] 

Even in the special theory of relativity, proper time elapses differently for 

clocks moving relative to each other. In the general theory of relativity, proper time 

elapses differently even at different points of space in the same reference system. This 

means that the interval of proper time between two events occurring at the same 

point in space and the interval of time between two events simultaneous with these 

at another point in space are in general different from one another. 

 

7.2 The constant gravitational field 

 

The motion of a free particle is determined in the special theory of relativity from 

the principle of least action,  

 

 0 dsmcS  ,  

[Note edit: In physics, the principle of least action – or, more accurately, the principle 

of stationary action – is a variational principle that, when applied to the action of a 

mechanical system, can be used to obtain the equations of motion for that system. The 

principle led to the development of the Lagrangian and Hamiltonian formulations of 

classical mechanics.] 

according to which the particle moves so that its world line 
4
 is an extremal between 

a given pair of world points, in our case a straight line. 

The motion of a particle in a gravitational field is determined by the 

principle of the least action in the same form, since the gravitational field is nothing 

but a change in the metric of the space time, manifesting itself only in a change in 

                                                 
4
 Note edit: In physics, the world line of an object is the unique path of that object as it travels 

through 4-dimensional spacetime.] 

http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Variational_principle
http://en.wikipedia.org/wiki/Action_%28physics%29
http://en.wikipedia.org/wiki/Mechanics
http://en.wikipedia.org/wiki/Equations_of_motion
http://en.wikipedia.org/wiki/Lagrangian_mechanics
http://en.wikipedia.org/wiki/Hamiltonian_mechanics
http://en.wikipedia.org/wiki/Classical_mechanics
http://en.wikipedia.org/wiki/Dimension
http://en.wikipedia.org/wiki/Spacetime
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the expression for ds  in terms of the idx . Thus, in a gravitational field the particle 

moves so that its world point moves along an extremal, or as it is called, a geodesic 

line in the four space; however, since in the presence of the gravitational field space-

time is not Galilean, this line is not a straight line and the real spatial motion of the 

particle is neither uniform nor rectilinear. 

In non-relativistic mechanics the motion of a particle in a gravitational field is 

determined by the Lagrangian 

 

 0

2

02

0
2

v
m

m
cmL  , 

 

where   is the gravitational potential and we added the constant 2

0cm  so that in the 

absence of the gravitational field the Lagrangian  
2

v2

02

0

m
cmL  be exactly the same 

as that to which the corresponding relativistic function 
2

2
2

0

v
1

c
cmL   reduces in the 

limit 0/v c . 

Consequently, the non-relativistic action function S for a particle in a 

gravitational field has the form 

 

 dt
cc

ccmLdtS  










2

v2

0 . 

 

Comparing this with the expression 0 dsmcS we see that in the limiting 

case under consideration 

 

 dt
cc

cds 










2

v2

. 

 

Squaring and dropping terms which vanish for c , we find 

 

 222

2

2 2
1 rddtc

c
ds














, 

 

where we have used the fact that rddt


v . 

Thus in the limiting case of weak gravitational fields the component 00g  of the 

metric tensor is 

 

 
200

2
1

c
g


 . …………………..     (1) 
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[NB:  0

00

1
dxg

c
d  , ds=c d , 0dx =cdt where t is non-relativistic time] 

A gravitational field is said to be constant if one can choose a system of 

reference in which all the components of the metric tensor are independent of the 

time coordinate 0x ; the latter is then called the world time.  

The choice of the world time is not completely unique. Thus, if we add to 0x  an 

arbitrary function of the space coordinates, the ikg  will still not contain 0x ; this 

transformation corresponds to the arbitrariness in the choice of the time origin at each 

point in space. Of course the world time can be multiplied by an arbitrary constant, i.e. 

the units for measuring it are arbitrary. 

Strictly speaking, only the field produced by a single body can be constant. In 

a system of several bodies, their mutual gravitational interaction will give rise to motion, 

as a result of which the field produced by them cannot be a constant. 

If the body producing the field is fixed (in the reference system in which the ikg  

do not depend on 0x ), then both directions of time are equivalent. For a suitable choice of 

the time origin at all the points in space, the interval ds should not be changed when we 

change the sign of 0x . Therefore all the components 0g of the metric tensor must be 

identically equal to zero. Such constant gravitational fields are said to be static. 

 

However, for the field produced by a body to be constant, 

it is not necessary for the body to be at rest. Thus the 

field of an axially symmetric body rotating uniformly 

about its axis will also be constant. However, in this case 

the two time directions are no longer equivalent by any 

means-if the sign of the time is changed, the sign of the 

angular velocity is changed. Therefore in such constant 

gravitational fields (we shall call them stationary fields) 

the components 0g of the metric tensor are in general 

different from zero. 

 

The meaning of the world time
5
 in a constant gravitational field is that an interval 

of world time between events at a certain point in space coincides with the interval of 

world time between any other two events at any other point in space, if these events are 

respectively simultaneous with the first pair of events. But to the same interval of world 

time 0x there corresponds, at different points of space, different intervals of proper time 

 . 

The relation between world time and proper time can be written in the form 

 

 0

00

1
xg

c
 , 

 

applicable to any finite time interval. 

                                                 
5
 Time  measured by person moving 
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If the gravitational field is weak, we may use the approximate expression (1) to 

find 

 

 .
2

1
0
















c
c

x 
  

 

Thus proper time elapses the more slowly the smaller the gravitational 

potential at a given point in space, i.e., the larger its absolute value ( 0 ). If one of 

two identical clocks is placed in a gravitational field for some time, the clock which has 

been in the field will thereafter appear to be slow.  

In a static gravitational field the components 0g  of the metric tensor are zero. 

This means that in such a field synchronization of clocks is possible over all space. The 

element of the spatial distance in a static field is simply 

 

 
 dxdxgdl 2 . 

 

Let us consider the propagation of a light ray in a constant gravitational field. Let 

f be any quantity describing the field of the wave. For a plane monochromatic wave 

f has the form 

 

     trkiaf


exp , 

 

where it is understood that we take the real part of the expression. Generally, the 

expression for the field can be written as 

 

  iaf exp . 

 

In the case the wave is not plane, the amplitude a is a function of coordinates and time 

and the phase  , which is called the eikonal, does not have a simple form.  

However, over small space regions and time intervals the eikonal   can be 

expanded in power series: to terms in first order we have 

 

 
t

t
r

r











 


0 , 

 

(the origin for coordinates and time has been chosen within the space region and time 

interval under consideration; the derivatives are evaluated at the origin). Hence, by 

comparing this expression with the plane wave, we can write 

 

 








r
k 


, 
t





 . 
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In the general relativistic case we can assume that the frequency of light is the 

derivative of the eikonal   with respect to the world time cx /0 ,  

 

00
x

c






 .  

 

Since the eikonal does not contain 0x  explicitly, the frequency 0  remains 

constant during the propagation of the light ray. The frequency measured in terms of the 

proper time is 








 ; this frequency is different at different points in space. 

From the relation  

 

 
00

0

0

0
g

c

x

x

x 















 








 , 

 

we have  

 

 
00

0

g


   . 

 

In a weak gravitational field we obtain 

 

 









20 1
c


 . 

 

 We see that the light frequency increases with increasing absolute value of 

the potential of the gravitational field, i.e. as we approach the bodies producing the 

field; conversely, as the light recedes from these bodies the frequency decreases.  

If a ray of light, emitted at a point where the gravitational potential is 1  has at 

that point the frequency  , then upon arriving at a point where the potential is 2  will 

have a frequency (measured in units of the proper time at that point) equal to 

 

 






 












2

21

2

2

2

1

11

1
cc

c









………………(foot note

6
) 

 

 

                                                 

6
 21

2

1
0

)1(





 potentialatpotentialat

c





 equation is as above 
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A line spectrum emitted by some atoms located, for example, on the Sun, 

looks the same there as the spectrum emitted by the same atoms located on the 

Earth would appear on it.  

If, however, we observe on the Earth the spectrum emitted by the atoms 

located on the Sun, then, as follows from what has been said above, its lines appear to 

be shifted with respect to the lines of the same spectrum emitted on the Earth.  

Namely, each line with frequency   will be shifted through the interval   

given by the formula 

 

 



2

21

c


 ,………………………………[imp] 

 

where 1  and 2  are the potentials of the gravitational field at the points of emission and 

observation of the spectrum, respectively.  

If we observe on earth a spectrum emitted on the Sun or on the stars, then 

21   , and it follows that 0 7
 , i.e. the shift occurs in the direction of lower 

frequency.  

This phenomenon is called gravitational red shift[3].  
The occurrence of this phenomenon can be explained directly on the basis of the 

properties of the world time.  

Because the field is constant, the interval of world time during which a 

certain vibration in the light wave propagates from one given point of space to 

another is independent of 0x . 

 

 

 

Therefore it is clear that the number of 

vibrations occurring in a unit interval of world 

time will be the same at all points along the 

ray. But to one and the same interval of world 

time there correspond a larger and larger interval 

of proper time, the further away we are from the 

bodies producing the field. Consequently, the 

frequency, i.e. the number of vibrations per unit 

proper time, will decrease as the light recedes 

from these masses.   

 

7.3 Energy and velocity  

 

During the motion of a particle with rest mass 0m  in a constant gravitational field, 

its energy, defined as 
0x

S
c



 , that is, the derivative of the action with respect to the 

world time, is conserved; this follows from the fact that in a constant field the 

                                                 
7
 Potential 1  is on sun and 2  is on earth 
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Hamiltonian does not depend on 0x . The energy defined in this way is the time 

component of the covariant four-vector of the momentum ]4[ ,  

 

 l

klkk ucgmcump 00  . 

 

In a static field 

 

   220

00

2 dldxgds   , 

 

and we have for the energy of the particle 

 

 

  220

00

0

00

2

0

0

00

2

0

dldxg

dx
gcm

ds

dx
gcmE



 . 

 

We introduce the velocity  

 

 
0

00

v
xg

cdl

d

dl



, 

 

of the particle, measured in terms of the proper time
8
  that is, by an observer located at 

the given point.  

Then for the energy we obtain 

 

 .
v

1

00

2

2

2

00

2

0
gmc

c

gcm
E 



       (3) 

 

This is the quantity which is conserved during the motion of a particle in a 

constant gravitational field. 

In the limiting case of a weak gravitational field and low velocities, by 

substituting 
200

2
1

c
g


  in Eq. (3) we obtain approximately 

                                                 
8
 In relativity, proper time is the elapsed time between two events as measured by a clock that 

passes through both events. The proper time depends not only on the events but also on the 
motion of the clock between the events. An accelerated clock will measure a smaller elapsed time 
between two events than that measured by a non-accelerated (inertial) clock between the same 

two events. The twin paradox is an example of this effect. ], 

http://en.wikipedia.org/wiki/Theory_of_relativity
http://en.wikipedia.org/wiki/Time
http://en.wikipedia.org/wiki/Event_(relativity)
http://en.wikipedia.org/wiki/Clock
http://en.wikipedia.org/wiki/Inertial
http://en.wikipedia.org/wiki/Twin_paradox


14 

 

 

0

2

02

0
2

v
m

m
cmE  ,                                                            (3) 

 

where 0m  is the potential energy of the particle in the gravitational field. 

The expression of energy given by Eq. (3) also remains valid for the case of a 

stationary field.  

If the particle departs from point A at the moment of world time 0x  and arrives at 

the infinitesimally distant point B at the moment 00 dxx  , then to determine the velocity 

we must take not the time interval   0000 dxxdxx  , but rather the difference between 
00 dxx   and the moment   

 dxggx 000

0 / , which is simultaneous at the point B with 

the moment 0x  at the point A: 

 

    dx
g

g
dxdx

g

g
xdxx

00

00

00

0000 









 . 

 

Multiplying by cg /00 , we obtain the corresponding interval of proper time, so 

that the velocity is 

 

 
 






dxgdxh

cdx




0
v , 

 

where we have introduced the notations 

 

 00gh  , 
00

0

g

g
g 
  . 

 

The covariant components of the velocity v


form a three-dimensional vector in 

the space with metric   and correspondingly the square of this vector is 

 

 
  vv  , 

 vvv2  . 

 

With such a definition, the interval ds is expressed in terms of the velocity in the 

usual fashion: 

 

 

   

  .
v

1      

2

2

2
20

2200

0

20

00

2













c
dxgdxh

dldxgdxhdxdxgdxdxgdxgds













 

 

The components of the four-velocity  
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ds

dx
u

i
i  , 

 

are 

 

 

2

2

2

2

0

v
1

v

v
1

1

c
c

g

c
h

u










 , 

2

2v
1

v

c
c

u






 . 

 

The energy is  

 

  
uguhcmugcmE i

i  02

00

2

0 . 

 

After substituting the values of the four-velocity we obtain again the expression 

(3). 

 

Notes 

 
1  For a discussion of the relation between the field and geometrical aspects of gravity see 

V. A. Fock, The theory of space, time and gravitation, New York, Pergamon Press, 1959 

and R. P. Feynman, Lectures on gravitation, Pasadena, California Institute of Technology, 

1971. 
2 The definitions of the proper time and space intervals follows L. D. Landau and E. M. 

Lifshitz, The Classical theory of fields, Oxford, Pergamon Press, 1971. A different 

approach is presented in S. Weinberg, Gravitation and cosmology: principles and 

applications of the general theory of relativity New York, Wiley, 1972.  
3 A more extended analysis of the gravitational redshift effect, with emphasis on the 

observational data, is given in H. C. Ohanian, Gravitation and spacetime, W.W. Norton 

and Comp., New York, 1976.  
4  The definitions of the energy and momentum in a gravitational field follow L. D. 

Landau and E. M. Lifshitz, The Classical theory of fields, Oxford, Pergamon Press, 1971. 

  


