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ABSTRACT

A mathematical model for assessing the damage to an aircraft due
to blast from conventional ammunition has been developed. The
minimum distance of the point of explosion from the aircraft for its
permanent damage for a reference explosion has been obtained
depending upon the dimensions (thin plate or thin cylindrical shell) of
the structural clements.

1. INTRODUCTION

A military aircraft is subjected to various mechanisms of damage in a warfield.
- Among these, blast from the high explosive (HE) ammunition is a significant damage
mechanism. Since the actual vulnerability of a part of an aircraft depends to a great
extent on its area of presentation, the aircraft’s structure is by far the largest of the
potentially vulnerable items as it consists of nearly 80 per cent of the entire presented
arca of the aircraft.

It has also been noted' that among the various damaging agents, the fragments,
incendiary and non-incendiary bullets cause negligible damage to the aircraft structure
while the vulnerability due to HE and HE incendiary shells varies. The aircraft structure
is highly vulnerable to rods and moderate to highly vulnerable to external blasts.
| The chance of survival of an aircraft is influenced by many factors, a major factor
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apart from its flight performance, manoeuvrability, defensive armament, etc. Itis the
expressed desire of procuring agencies for military aircraft to incorporate the principle
of minimum vulnerability in new design concepts within the limitations of overall
design requirements’. Since an aircraft is usually designed within narrow limits for
flight and landing loads, its structure can withstand only small additional loads imposed
by weapon effects. In this context an accurate analysis of blast effects becomes
necessary for the designers of new aircrafts.

A mathematical model has been developed to estimate the dynamic response of
two different structural elements, namely a thin plate with prescribed boundary
conditions (such as simply supported or clamped on all edges) and a freely supported
thin cylinder subjected to explosive blast pulse. The thin plate model is expected to
provide a reasonably accurate analytic simulation of the response of the skin panels,
whereas the cylindrical model approximates the dynamic behaviour of entire fuselage — ’
structure.

2. THE MATHEMATICAL MODEL

2.1 The Thin Plate Model

We have modified Bauer's formulation® for the non-linear response of thin elastic
plate to pulse excitations to take into consideration the blast loads with realistic
parameters’. In order 1o obtain the results faster and more easily, the perturbation
method used by Bauer’ has been replaced by fourth order Runge-Kutta method.
Further a yield criterion, based on von-Mises criterion has been incorporated which
indicates the onset of plastic deformation®. This may be used to predict the region of
permanent damage. The basic equations for large deflection of a thin plate subjected
to a time dependent pressure loading are? :
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where w is the deflection of the plate of thickness h and mass density pi
D = EIP/12(1~) is the bending stiffness, E is Young’s Modulus and vis Poisson’s ratio.
v -%“-+z 9 ‘_%;.isthe biharmonic operator and ¢ denotes the time.
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The externally applied load has been taken to be the normally reflected blast
pulse (assumed to be uniform over a panel of small dimensions) given by the following
relations’

Py ) = P{l = T"-}""’" 3

P = BP!“& + D}!P!ZSP.' +1))
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where P,, P, and P, are the reflected blast pressure for normal incidence, incident
~~  blast pressure and ambient pressure respectively, and a and f, being the wave form
- parameter and blast pulse duration respectively (assumed to be same as those for the
incident blast pulse). The values of the blast parameters may be obtained from the
blast chart for conventional weapons or may be generated using Bode-type equations’.

Using the standard scaling laws, the results may be obtained for any given ammunition.

The problem lies in determining the Airy's stress function F and the plate
deflection w satisfying the Eqns (1) and (2) subject to the prescribed boundary
conditions. We have taken the panel bounded between consecutive pairs of stringers
and ribs as a rectangular plate. Following Bauer®, the solution has been obtained for
both simply supported and clamped plates which may be appropriate for various
conditions occurring in the aircraft structure.

The boundary conditions for a simply supported rectangular plate of length a,
width b and thickness h are :
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whereas for clamped plate, these are given by :
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The mid plane displacements u, v in x and y directions respectively arc
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In accordance with the conditions occurring in aircraft structure, lhc panel is
considered rigidly framed®. Hence the edges of the plate have been taken to be
immovably constrained, giving further the conditions : 3

9 _ _ .4
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The exact solution for large deflection in the general case is unknown®. Following
Bauer's formulation, approximate solutions may be assumed which result in a
non-linear ordinary differential equation in an unknown function of time.

2.1.1 Simply Supported Plate s

Here the solution has been assumed in the form (satisfying the boundary conditions
in Eqn (5))

Wxys) = W) cos % cos 22 ©

To separate the space and time variable, the Airy’s stress function is assumed in

the form

. —+b :
Oaty iz ®)

F(x,y.1) = F¥x, »)f*() (10)
Substituting the expression for w and Ffrom Eqns (9) and (10) in Eqn (1), we obtain
2
ViFe = =2 K Ez::’b’ (eos-zf-+cos—bﬂ) an
Using Eqns (7-9), the expression for F* (x,y) is obtained as ‘
Fi(x,))=— EX [ {(— + 7):‘ ( s ) }
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Now, substituting the values from Eqns (9) and (12) into Egn (2), the residue is
obtained as

b
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Employing Ritz-Galerkin method to solve Eqn (2), we obtain the condition

I:nj:nkem%ws%dxdyrzo (14)

Carrying out thé double integration as indicated in Eqn (14), the equation of
motion is obtained as

phf + Da‘h( a’) i Eh‘t‘ [{l + 2v(a@®/b?) + (a*/b%))
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# Once this non-linear equation i unknown time function ) is solved, the stress
function Fx,y,t) and the dynamic deflection of the plate w(x,y,!) can be determined
from Eqns (9) and (10) respectively.
2.1.2 Clamped Plate
The approximate solution assumed in this case satisfying the boundary condition
in Eqn (6) is
w(xys) = WO cos® == cos? 2 (16)
The Airy’s stress function is again assumed as in Eqn (10) and substituting into
Eqgn (1), we get
‘ - EWx 2%y 2 o 28y
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Adopting the same procedure as in the previous case, we get the equation ot
motion as
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Once, this equation is solved, the stress function and the deflection of plate are
obtained from Eqns (11) and (16) respectively.

2.1.3 Method of Solution O’

Bauer's original procedure suggests a perturbation technique to solve the
non-linear differential equation arising in the equation of motion [Eqns (15) and (18)].
Due to inclusion of cubic terms, this became quite cumbersome and virtually
impractical for real applications. Also, the perturbation parameter ¢ does not appear
to be less than unity as claimed by the author, hence the accuracy of Bauer's original
solution remains doubtful,

We have proposed a numerical scheme using fourth order Runge-Kutta-Gill
method to solve Eqns (15) and (18), hence the deflection of the plate at any instant
is immediately obtained and may be plotted very conveniently using a computer. The
plate deflection and its velocity are assumed to be zero initially (i.¢., £0) = £0) = 0).

2.1.4 Ouiset of Plastic Deformation

In order to accommodate the plastic deformation within the present theory, we
have proposed that with the increasing intensity of blast pulse, the deformation also
increases gradually with accompanying increase in bending moments and membrane
stresses. Visualising the outset of plastic deformation as the limiting case of the elastic
deformation at the yield point (dynamic yield stress in this case), the elastic relation
has been assumed to be valid upto this point.

The yield criterion based on von-Mises criterion is given as'

1 (N2 4 N2+ NNy + IN2) =25 (M2 4 N2 — MM, + 3M3) - 1=0 (19)
L4 ,

where N, = a,h; M, = g, l*/4; a, being the dynamic yicld stress of the plate material.
Ny, M, (k = x,y.z) are the membrane stresses and bending moments consistent with
earlier notations, and given by

% , O
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o= 4ZE -

At the centre of the plate (i.e., at the point of maximum deflection), the yield
condition Eqn (19) becomes

The deformation remains within elastic limit until Y. < 0, the onset of plastic
deformation is indicated at the moment when Y, = 0. The ultimate deflection at this
moment may be assumed to be initial values for plastic deformation.

2.1.5 Estimation of Permanent Deflection

Assuming a symmetrical mode of plastic deformation, a rhethod similar to the
method of Johnson and Mellor” has been used to estimate the plate deflection at the
moment when Y, = 0. For a simply supported plate this gives

- PG}
w= 60J (22)

where V,, = initial velocity of plate, ' = min(a,b). Similar result may be obtained
for clamped plate also.

2.1.6 Comparison with Critical Impulse Criterion of Damage

Sewell and Kinney’ have proposed a somewhat empirical criterion to predict the
failure of aircraft skin panels subjected to blast loading. This states that structural
failure under transient loading may be correlated to a critical time duration where
the latter is assumed to be one quarter of the natural period of vibration of the
structure. The critical impulse is given by

12
l.= (%) ho, (23)

A pressure pulse having a duration of one quaner of thc mnuml period or more.
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2.2 Thin Cylindrical Plate Model

There are many serious difficulties in the analytical modelling for the dynamic
response of the fuselage structure of an aircraft due to the following reasons :

(a) The exact pressure distribution around a cylindrical surface is highly
non-uniform®, hence a rigorous evaluation of the structural behaviour is
very difficult (at least analytically).

(b) The fuselage structure being stiffened by ribs and stringers. can be more
accurately modelled as an orthotropic structure but this is not usable in
assessing the permanent damage, as the yield criterion is not known for this
type of structure®.

To overcome such difficulties, some simplifying assumptions have been made :

(a) The pressure distribution has been assumed to be almost uniform around
the cylinder. This assumption, although not realistic, gives reasonable
estimates for shell behaviour under smoothly varying asymmetric loads such
as the one caused by explosive blast®.

(b) The cylinder has been assumed to be structurally isotropic in order to have
a consistency with the yield criterion available at this time.

The equation of non-linear flexural motion for a thin circular cylinder for large

deflection is*"” :

DV DX = () + ;“’:{‘g%}‘" + ‘%ﬁ%-z;’;g] @4)

together with the compatibility condition
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where w is the radial deflection, R is the radius of the shell, the other notations being
the same as those for thin plate model. The blast loading is as given by Eqns (3) and (4).

For freely supported boundary conditions (i.e., simple support without axial
restraints), the solution is assumed as™'' :

'

- - 1
w = Al sin @.xsin By + 22AN) (1 - cos 2a.2) (26)
where a,, = mn/L, i, = n/R. Substituting Eqn (26)in Eqn (25) and integrating, we get

2
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Now, substituting the values of w and Fin Eqn (24), the expression for the residue
R is obtained as in the plate model.

Further the simplifying assumption was made that small perturbations in the
loading function may be expressed as

Pxy:) = qu(f) sin @x sin fy (28)

Employving Ritz-Galerkin method to solve forw, the following condition is obtained

L 2 xR
I R(x,y.1) sin a xsin By dxdy = 0 (29)

z=l) Jy=0

Carrying out the integrations as indicated in Eqn (29), the equation of motion is
obtained as

e En[*’(a 248D | ]A ‘,{ alpin’ }9
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which can be solved by Runge-Kutta-Gill method as in the case of thin plate model,
using similar initial conditions.

2.3 Outset of Plastic Deformation

The yield criterion given in Eqn (19) is applicable for shells also®. The membrane
stresses and bending moments for thin shells are obtained exactly in the similar manner
as in the case of thin plates. An explicit relation for the yield criterion is obtained
using Eqns (26) and (27), which can be conveniently accomodated in the computer

programme for the evaluation of the dynamic deflection w(x,y,t).
3. NUMERICAL RESULTS AND DISCUSSIONS

3.1 Thin Plate

For illustration, we have considered a square plate of strong aluminium alloy
with 10 cm side and 0.25 cm thickness. The material constants are as : Young's
modulus E = 7.5 x 10" dynes/cm®, Dynamic yield strength = 9.7 x 10° dynes/cm’,
mass density p = 2.8 gm/ce, Poisson’s ratio v = 0,33,
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PLATE DEFLECTION VS TIME CURVE

o SIMPLY SUPPORTED PLATE
A CLAMPED PLATE

DEFLECTION

-0.40 - - - ; . .
0,0E+00 2.06-04 &.0E-04 6.0E-04 B.0E-04 10E-03 1.2E-03
TIME

Figure 1. mdmmuwu-o.zsmua-mux 10 cm
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is found to be 121 cm approximately for simply supported edges and the corresponding
maximum deflection at the centre of the plate is 0.4568 cm. The corresponding
deflection of the same place with clamped edges is 0.277 cm. . ‘

Taking the maximum initial velocity imparted to the plate as 5200 cm/s (as obtained
from Runge-Kutta-Gill algorithm), the maximum plastic deflection is found to be
0.52 ¢m, which shows good agreement with our model. However, in the case of
clamped plate, slight discrepancy is noticed. This might be occurring as the initially
assumed deflection profile for clamped plates may not be as good enough as in the
case of simply supported plates.
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Hence the ratio of the critical reflected overpressure to ambient pressure
(ptp,) = 5.4319 which corresponds to a critical distance of 130 cm from the point of
explosion. The corresponding blast duration ¢, is 7.5 X 107*s >> ¢ ensuring a potential
damage to the panel under consideration. Keeping in view of the empirical nature of

 this criterion, this is a reasonably good agreement with the proposed model.

‘3.2 Thin Shell

Here we have considered a thin shell of the following dimensions: length
= 10 cm, radius = 10 cm and thickness = 0.25 cm. The material constants and blast
loading data are the same as in the previous model. The non-linear vibrational
behaviour is shown in Fig. 2. The minimum distance to cause permanent deflection
in this case is found to be 103 cm.

0.30. BLAST RESPONSE OF SHELL
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