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Introduction : Problem of propagation of shock waves in non-uniform
medium is of great interest for exploring the effect of explosions in stars
and atmosphere of the earth. Earlier many authors have considered this
problem by taking different density variations, by the methods of similarity
solutions. Sakurai [1] has discussed the problem of propagation of weaken-
ing shocks in stars by expanding all the thermodynamical parameters in the
form of a series in terms of powers of (Ry /&) where R, is the distance of
the shock front from the point of explosion and R is the distance depend-
ing on the strength of the explosion. Carrus et. al.[2], Kopal [3] and
Bhatnagar et. al. [4] have transformed nonlinear equations of motion into
linear ones by introducing a_similarity variable £=r® 1¥ and have found
the variation of self-similar fluid velocity, density and pressure behind the
shock front, with the help of numerical methods.

Propagation of shock waves in an exponentially decreasing medium
has also been studied by various authors such as, Grover and Hardy [5],
Kompaneets [6], Andriankin et. al. [7), Raizer [8] and Hayes [9. 10].

Bhatnagar and Sachdev [11] applied Whitham’s Rule [12] to the
propagation of shock waves in an isothermal, self-gravitating, radiating
gas sphere. A differential equation for the variation of Mach number and
Shock distance was found. This equation was integrated numerically for
different models of the stars.

In this paper by using Whitham’s Rule [12] an attempt has been
made to find an analytical approximate relation for the Mach number in
¢erms of distance of the shock front, in a one dimensional plane model in
which density and temperature is varying exponentially. Density and
temperature in the medium are varying as po=pc € ** T=T,ePB*, where
« and B are some constants having dimensions of inverse of a distance, and
x is the distance measured from the point of explosion. Variations of the
shock velocity and the Mach number is obtained in terms of the shock
distance, for A=0,y=1andA=1, v=4/3, 7/5 where A=/«. So thatA=0is an
isothermal case and A=1, a case with decreasing temperature. In all the
three cases, it is shown that the shock velocity and the Mach number in-
creases as the shock propagates from the point of explosion. Graph show-
ing the variation of the shock velocity U and distance R is drawn for y=1,
4/3 and 7/5 where U and R are dimensionless. An approximate relation
for the Mach number and the shock velocity is found in terms of the
distance of the shock froat.
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Formulation of the Problem : Let us assume a medium in which
thermodynamical parameters are varying in parallel planes from a fixed
plane denoted by x=0, according to the law,

' po=pc €%, Ty=1T, Z .. (l)‘
where p,, T, are density and absolute temperature at a distance x measured
normal to the planes of variation and p,, 7, their values at the plane x=0. «,
B are some constants having dimensions of inverse of a distance. We assume
that at time #,=0, there is an explosion at point O in x=0 plane. Due to
the explosion, a shock wave is created which moves in all the directions.
We consider only that portion which moves normal to the plane of variation
of density and temperature. For simplicity shock front is assumed to
be plane. L_et U,, M, be the shock velocity and the Mach number of the
shock when it reaches at a distance R,, at time 7,, We rtake medium to
be such that it holds gas law,

Po=Rp, T,

where R is the gas constant and p, is the pressure. From equation (1) we:
have by using gas law,

Po(x)=p, e~'*+B) e @
where Do—=Ro. T,

If s, pooy pos denote fluid velocity, pressure and density behind the:
shock front, jump conditions across the shock front are,

2¢,

tps (Ry, t°)=T+1 {M— My}
Ry, t L ZMz—Y————l} PP o)
Doz (Ry, 1) G+D 0 » (3)

(y+1) paM,*
B =01 My
; U, _
where M.,=c—° and ¢,=4/YPolpo
0
and R, is the distance of the shock front from point O.
| We define dimensionless parameters p, p, U, ¢, Ps, s Uz, Co, 2S

P=Po[Pe» ="0ulPes U=Uy/Cc: c=cyfe,

Ps=DPoa/Pe> Pa="Po2/Pe> Us=Ups 5 =Cgs[Co . Ay
where co=(polps)'?
and dimensionless distances r, R and time 7 as,
r—ax, R=or,, t=0¢s t; e )

Substituting the relations (1), (4) and (5) in relation (3) we get,
G 2c )
uy (R, ')_ﬁ-—l {M—M~"}

P2 R )= 1 (M) --(6)

D oM
Pa (Rs t)— g (M)

where
M= U/C=U°/C0=M°

f(M)_—-{ZM’—I;—l} o T

- —
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8M)={2+(y—1) M*}
R is the dimensionless distance of shock front from point 0. Relations (6)
are Rankine-Hugoniot relations in dimensionless variables.
The Discussion of the Problem : We shall now a ly Whitham’
Rule to the relations (6). The equations of motion algggy the Igos?.tni]v:

e, (R S,
characteristic axis —d-t=u2+ Cy 1S glven as,

@2 + P2c2 du2=0.

y : ...(8)
Now since by Whitham’s Rule, variations of parameters behind
) th
shock front are parallel to the positive characteristic axis behind the shock.
front, we put relations (6) in relation (8) and get,
dj
gon-+ar—n wany L—ar-y) h(M)‘i:-
- S amM
HERM)F2AM 1) KM 57 =0, ...9)
where h(M )= 1/ (M) .
: (M) <) ...(10)
By making use of the relations
p=e R, p—e— 1R o AEE)

at r=R, where )\=§- into the relations (9), we get a differential relation in
M and R as,
9 dM

a,R=MK(M),

weisi(ED)
where

_ (L) £(M) 4 (M>—1) h(M) -
K=o+ rany LAY

In the table, we have given the values of K(M) for A=0, y=1 and
A=1, y=4/3, 7/5, as M varies from 1 to infinity. It is found that varia-
tion in K(M) as M >2is small for A=1, y=4/3, 7/5 but for A=0, y=1,
K(M)—0 as M— oo and variation is not so small. Hence in former case,
we take variations in K(M) negligible as M varies. We consider twe
cases, first a general casei.e., A=1, y=4/3, 7/5 and second an isothermal

case, i.e.,A=0, y=1. We also assume that value of Mach number at
point O is two.

General Case : If we integrate equation (12), and assume K{M) to
be constant for the purpose of integration, we get,

2 M
R= 7 (E) .14
where M, is the value M at R=0. Relation (14) can also be written as,
M=M, eK'MIR]2 = ..(15)
also from (15) we have an expression for shock velocity as
U=+/yM, e O—KIR]2, s (E6)

It is to be noted that (15) and (16) hold only for A=1, since variation in
K(M ) is not small for A=0. :

Isothermal Case : Since variations in K(M) is not small for A=0,
v=1 and also K(M)—0 as M—>co, we cannot apply above method for this
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case. But it is easily seen that K(M) is ve h simpli =0
Expression for K(M) for A=0 and y=l) is R A

2M
KM)=—~———
. (M) ME1) ...(17
Therefore equation (12) becomes
dR (M+1)- ...(18)
Integrating (16 i iti
N g ing (16) and using the condition, when R=0,'M= M,, we
.5 3 ! -~ M2 e(Mé_i)/M=AeR, o (19)
where  A=M;? eM:E—1M,
Also, expression for sound velocity is given by
C=+/ye 2RI L2

and is unity fi;f:'isothermal case. Relations (19) and (2 i i
the shock velocity. €9 and, 1) onmiml wive

TABLE
VARIATION OF K(M) wiTH M.
A\\ KM
NGE | o t
» - X

- \\ p—1 ’ y=17/5 y=4/3
1 <500 -857 875
2 -444 1:238 1-237
3 <375 1-338 1-331
4. =320 1:372 1:372
5+ +278 1-396 1-383
6 245 1-406 1-393
S +219 1-409 1-398
$ 8 -197 1:417 1-402
9 -180 1-420 1-405
10 165 *165 1-422 1-406
15 117 1-427 1-411
20 +090 1-429 1:413
25 *074 1-429 1-413
50 -038 1-432 1-414
-000 1:432 1-414

In the figure we have drawn the shock velocity U against the distance

R, for A=1, y=4/3, 7/5ahd A=0,y=1. It is shown that shock velocity in-

“creases slowly for isothermal case i.e., for A=0, but increases sharply forA=1.
But in both the cases the strength of the shock wave increases as it moves

in an exponentially decreasing medium. By Whitham’s method we have been

able to show that shock velocity and the Mach number of the shock velo-
ity increases as it propagates in the medium with decreasing density. While
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by the method of similarity solution this was not possible and expression

for Mach number with that method shows that it is constant. It is our

intention to extend this work to the atmosphere of earth elsewhere.

~ The author is thankful to Dr. Prem Kumar, 11T, Delhi for his sincere
guidance during the preparation of this work, and to Dr. Sampooran

Singh, Director TBRL, Chandigarh for his permission to publish it.
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