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Introduction ; Sakurai [3], Carrus, et. al. (1], Kopal [2], and many other
authors have discussed the problem of propagation of shock waves in spheri-
cal non-homogeneous model by using self-similarity methods. Sakurai has
taken density as solution of Lane Emden equation, while other authors have
taken density varying as power of inverse distance, with centre of the star as.
origin. Kopal and Carrus et. al. have introduced a new variable E=r—> where
A=a/2 and thus have transformed non-linear equations of motion into linear
one. By taking Z=constant at the shock front they have found Mach.
number of the shock which comes out to be constant.

In the present paper the problem of propagation of shock waves in
one dimensional plane model in which density is varying as, Po=Fr-% is con-
sidered, by using Whitham’s Rule [4]. Results of Kopal, Carrus and other’s.
are derived directly, with little modifications. It is shown that Mach num-
ber and shock velocity increases as the shock propagates into the decreasing
density medjup. Analytic relations are obtained for Mach number ami
shock velocity. :

Basic Equations : We consider a plane one dimensional medium, acted'
upon by a force Fi(x) given by Fy(x)=F, x""-2) F, being value of Fi(x) at
point x=0. We denote this point by 0. It is seen from the expression for F(x)
that point 0 is a point of discontinuity and F,(x) becomes infinity at this point..
To avoid discontinuity at 0, we assume that there is a small region of length
X4 from 0, in which density of medium is constant and is of value p,. Due:
to force F(x), density is also varying in the medium. Let its form‘ls given
by po=g.x~* where p, is the density at point 0. Force Fy(x) and density p,(x)
are varying from point 0 in parallel planes.

If uy, py, gy, 1, are fluid velocity, pressure, density and time at a dis-
tance x from point 0, then equations of motion are,
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and conservation of entropy gives -
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Here we have assumed that entropy is constant along the stream lines.
We introduce a distance %, such that at X=R, force, pressure and den-
sity become 7, p and p. Then since Fy(x)=F.x'""-% we have
F,=F R'*=-1) ... (4)

Pe=P R } o veii(S)

and
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We introduce dimensionless variables given by,

F=F,[F, p=py/2(z—1) P, p=p,[P, tt= >
c

r=x[/R and t=(c/R)t, ... (6)
where
' E*=3§5-;—1)—” and F=20=12,
PR
Then equations (1)-(3) become
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Force and density in- equilibrium state become, -
F=rll-0) o—p-2, = +:(10)
From (8) we get in equilibrium,
d—r——PF.
Integrating this we get,
e usan 1y ...(10a)-
2(e—1)

In order pressure to be positive, we must have «>1.

We assume that there is an explosion at point 0 and a shock propaga--
tes along a line which is normal to the plane of variation of density and
pressure. When shock reaches a distance r,, where r,=x,/R, at time 7, let.
its strength be given by M =2. Thus we eliminate the mathematical discon-
tinuity at point r=0.

Let quantities behind the shock front be denoted by subscript 2. As.
shock crosses the point where u, p, f are the values of velocity (dimension—
less), pressure and density, jumps in these quantities across the shock at point
r—Ris;

2c =
u, (R, t)—_—m (M—M ) ..(1])
P (R, t)ﬂ%f@ﬂ . (12)
_(r+D)eM? ,
pa (R, )= (M) ...(13)

where M=U/c, U being shock velocity and R being shock distance from.
point 0. And :

g r—1 .
f(M)={2M _T} _ ...(14)
g(M)={2+(r—1) M*} oe - (19)
c’=rple. ...(16):

Here we have taken fluid to be stationary in front of the shock surface..
Relations (11) to (13) are known as Rankine-Hugoniot relations.
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Discussion of the Problem: Now we shall apply Whitham’s Rule [4]
o get a relation for shock velocity. Equations of motion along the positive

=l . dR .
«<haracteristic axis ‘7‘-=u2+02 is,
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Substituting values of P,, p,, u, from (11) to (13) i i
get after some simpliﬁsations,? ik ) D e
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Using values of p and f from (10a) and (10) in (18) we get,
' oM 2R oM  x

u. being a constant given by ,\/ 2(9:—"—1_) and,
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In table, I, values of K(M) are computed for «=1"5, 2, 2" Sandr=1-4,
15, 1°667 and it is found that the variation in K(M) is small as M varies
two to infinity. As Mach number increases from one to two, there is an
abrupt change in the value of K(M), which is due to the presence of the force
F (R). Since for small values of M shock is weak and hence force F is domi-
nating. At M=1, velocity behind the disturbance front is zero, since it is
zero in front of it. Hence force balances the pressure term and K(M) is
zero. But as shock becomes stronger and stronger, velocity behind the
shock also increases and so does the pressure. Moreover force is decreasing

TABLE 1

[ =15 2=2 [ z=2+5

M 'Y=1'4ly=l'5 =53 -{.—_1-4’7=1>5[7=5/3’y=1-4|y=1-5 =5/3
% 0 0 o 0 0 0 0 0

15 0-144 0-°163 0-156 0-519 0-521 0-505 0-828 0-900 0-855
2 0°167 0°177 0-189 0-646 0°662 0683 1-125 1-148 0-992
3 0°166 0-183 0-204 0-764 0-789 0-821 1-362 1-395 1-438
4 0-160 0-181 0-207 0-815 0-837 0973 1-441 1-491 1-539
5 0°156 0-179 0-208 0-826 0-858 0-828 1-496 1-537 1-595
10 0154 0-176 0-208 0-863 0°869 0°933 1:572 1-602 1-657

0:146 0-174 0-208 0-866 0°899 0-944 1-576 1-624 1-687

Variation of K(M) versus M.
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as R increases. Hence pressure term and inertia term dominate. At very
large distance from the centre, effect of force F(R) is negligible and alsor
variations in K(M) become negligible. Due to these small variations in
K(M), if we take K(M) to be constant during the process of integration
it simplifies the results to a great extent. Integrating partial differential
equation (20) as R, ¢ vary from r,, t, to current value R, t we get,

Rx/2
M(R, 1)=
= s (22))
{r‘alz_*_p_ aTl< (t— t*)} ( )‘
also we have
dR
7 =M oo (23)
Putting values of M from (22) and ¢ from (10), (10a) in (23) we get
ar_ ek 24)
di {r+ph (I—1,)} -4
where
a—K 1
= 5 (23
Relation (24) expresses shock velocity in terms of R and ¢ both. Elimina-
ting ¢ from (22) and (24) we get ...(26)
M=(R/r,)<"
and
U=p R 0-2jr X2, ...QTy

Relations (26) and (27) give Mach number and shock velocity as a function
of R and r,.

Results (26) and (27) are of course true for M >2, since variation of
K(M) is not small for M<2. These relations show that M increases with R..
This means shock becomes stronger and stronger as it propagates in decrea-
sing density medium. Results (27) and (26) are remarkably true for higher
values of M.

Comparison of Results with the Previous Work : The results (22), (24)..
(26) and (27) are derived on the assmuptions that the shock starts at a dis-
tance r, from the point 0, which is a point of discontinuity, and has not
been considered in the problem. However in some results if we take an
approximation that r, and 7, go to zero in the limit, we get the results
which have already been derived by the earlier authors. If we put r, and
1, equal to zero in (22), we get

M(R, t)=R*2Jurt ..-(28)
and from (24) we get
AR one 29)
T z o

Expression (29) is same as derived by Kopal [2], except that 7\=% in his case.

Now if we integrate (29) from r,, 7, to R, ¢ we get,
RAt=p At = ... (30)
where 7, is a constant. Using (30) in (26) and (29) we get,
M(R, t)=R¥*[uhy P 1)
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and

RU1-1) i
UiiRy)==r (32

%k
Result (31) is parallel to the one derived b Kopal, exc ;
RX2, which is only responsible for the variatioﬁ of 1\31 ; oept ToxiRaiisias
It is concluded from the above discussion that if we take K—
tally with those of earlier authors, Although the results daéri(:velfi a%or:: 1;11:2
sufficiently approximate, since we have taken K to be constant approximate-
ly, yet they lead us to more physical conclusions that shock tecomes stronger
and stronger as it propagates outward and is not constant as shown in ‘he
«<carlier works. Beauty of this technique, is that we get analytical relations
16F Mach riimber and shock velocity in terms of distance of the shock front
from the point of explosion. Also by using this technique we avoid similarity
solution method. The same technique can be generalised for the spherical
«case.
Author is thankful to Dr. Prem Kumar, Indian Institute of Techno-
-logy, New Delhi, for his sincere guidance, and to Dr. Kartar Singh, Director,
Defence Science Laboratory, Delhi, for his kind permisssion to publish the
‘work.
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