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ABSTRACT

In this paper, an approximate closed-form solution for trajectories of ballistic projectiles is
derived. The assumption made in this derivation is to neglect the variation of the elevation angle
along the trajectory in‘a small interval of time. The closed-form solution has been used to develop
the algorithm for a lead angle computation as well as faster computation of trajectories. The fact
that one of the analytical expressions, although complex, is invertible and is made use of in the

algorithm.,
NOMENCLATURE Vo Initial velocity of the projectile
C pSC,/2m u Horizontal component of the velocity

Density of the air v Vertical component of the velocity

X, Y2, Target position at time ¢

S Reference area of the projectile

m Mass of the projectile X4 Y 24 Target present position

Cy Drag coefficient ug, vz Wy Target present velocity

g Acceleration due to gravity Z Height of the projectile
Step size Y Elevation angle

s Horizontal range of the projectile Yo Initial elevation angle

s, Horizontal range of the target Vo Lead azimuth angle

|4 Velocity of the projectile t Time
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1. INTRODUCTION

Computation of lead angles and preparation of
range tables for ballistic projectiles are some of the
essential tasks in many theoretical and practical
applications, such as lead computing sights,
vulnerability study of aircraft, etc. In these tasks,
trajectories of the projectiles like bullets, shells and
missiles are to be computed several times. These
computations consume substantial amount of
computational time. The aim of the present study is
to reduce the lead angle computational time to less
than allotted time of 0.1 s.

Governing equations of these trajectories are a
system of coupled ordinary differential equations
and are solved only numerically. Some attempts
were made in the past to simplify these equations
and find analytical solutions. One such attempt

was that of Siaccil, who made two assumptions:
(i) approximation of ratio of cosines of initial
elevation and elevation of any point on the trajectory
to unity, and (ii) neglecting variations in the air
density along the trajectory. With these assumptions,
the governing equations are reduced to a simpler
form and can be integrated by means of
quadratures. Application of this theory is limited to
rajectories with relatively small elevation angles.

In Siacci theory, the drag function is taken as
proportional to nth power of the velocity, where

values of n are given in a Mayevski’s table !, The
values of n vary from 1.55 to 5.00 depending upon
the velocity of the projectile. In many applications,
the drag is also taken to be proportional to the
square of the velocity. The proportionality constant
includes drag coefficient. In this paper, an
approximate analytical solution for the trajectories
has been derived by taking the latter form of drag
function and making an approximation similar to
the first approximation of Siacci theory. Taking
variation of the elevation angle to be negligible in a
small interval of time, the governing equations are
decoupled. The resulting equations are then
integrated to yield a closed-form solution.
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Trajectories of the projectiles constructed
using this approximate solution were analysed.
Error analysis showing the truncation error had
been conducted. Numerical experiments were
conducted to compare such computed trajectories
with those computed through numerical
integration using Runge-Kutta method. As the
step size decreases, the trajectories of the new
method converge to those of the numerical method.
The new method is faster than the numerical
method. '

This paper also contains a new faster algorithm
based on the closed-form solution for determining
the firing angles to intercept a moving target. This
algorithm can be used in the lead computing sights.
The closed-form solution for the projectile
trajectories, derived in Section 2 and Section 3,
outlines a method of constructing trajectories using
the closed-form solution. It also includes details of
the numerical results and the error analysis. In
Section 4, an algorithm for lead angle computation
that uses the closed-form solution is described.

2. CLOSED-FORM SOLUTION OF
PROJECTILE TRAJECTORY

Trajectories of the projectile are the
two-dimensional curves with the following
governing equations:

5= CVicos () (1)
%=—CV2 sin(y)-g (2)
L ®
= 4

It is assumed that the variation in the elevation
angle in a small time interval, (¢,  + k) is negligible.
Without loss of generality, a typical time step to be
the initial time step, that is (0, ) is taken. This
assumption reduces Eqns (1) and (2) to
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% =—Csec () u? (5)
-‘% =— C cosec () - g (6)

where 7, is the elevation angle at ¢ =0.

These equations are now decoupled and can be
integrated to get a closed-form solution. Depending
upon the signs of right hand side constant
coefficients of Eqn (6), two different cases arise in
the integration. The first case is of the ascending
mode of flight, i.e., when the elevation angle is
positive and the coefficients have same sign. The
other case is of the descending mode of flight, i.e.,
when the elevation angle is negative and the
coefficients have different signs.

By taking 7, to be positive and the initial
condition as =0, V=V, u=V,cos(y) and
v=V, sin (), integration of the Eqns (5), (6) and
(3), (4) yield

_ Vo cos ()
& CVpt+1 7
_1/8851(')’0) [ / g ]
v= —c tan s (1) (c;=0D] ®
s=8y+ COSCSYO) log (1 + CVyt) )
— smé?o) log|cos (‘V ;mg(g'yo_) (c; - t)]

A / _cg
/ cos (cl e ('YO)J (10)

where (sg, Zy) is a point on the trajectory at =0 and

¢ = —\/ ——smcg") tan”" | V, '\/ Cein () SZ %) | 4y

In the descending mode of flight, y, is negative
and hence the coefficients of Eqn (6) differ in signs.

As far as Eqn (5) is concerned, there is no change
between the ascending and the descending modes.
Therefore, the expressions for u and s in' the
descending mode are same as those in the
ascending mode.

By taking v, to be negative, and integrating
Eqns (6) and (4), one gets

- /-ggin(yo)
L C
1/—_6"8_ B
tanh[ #in () (cp t)] (12)

sin (Yp)
&

A /—_Cg_ _
[cosh[ ) (cy t)] /
A /;CX_
cos h {cz o ('Yo)] (13)
where

: — Csi
(:2=‘V —SI_I_‘;?) tan ™' Vo V —S;n )

(14)

z=z9+ log

3. TRAJECTORY CONSTRUCTION USING
ANALYTICAL SOLUTION

3.1 Single-Step Method

Generally the trajectories are constructed
using a suitable time step. The positions of the
projectile after every time step are calculated, and
the curve joining these points gives the trajectory.
The above derived analytical expressions can be
used in the calculation of the trajectory points as
follows:

For a given initial elevation angle (y,) and
velocity (V,), the trajectory point after time (k) is
computed using Eqns (7) to (11) or Eqns (7) to (9),
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and (12) to (14) depending upon whether ¥, is
positive or negative, respectively. While
calculating a trajectory point after next time step,
elevation angle and velocity of the previous step is
taken as Yy, and V,, respectively.

If values of the drag coefficient and the air
density versus velocity are given in a tabular form
then values of these coefficients in each time
interval can be computed by an interpolation
method. In this paper, the trajectories constructed
by the above method are referred as constructed
trajectories,

3.2 Numerical Experiment & Error Analysis

The above method of constructing trajectories
is a single-step method. Order of this method is
estimated for a numerical example.

Let so(f) and z,(f) be the range and height of a

point on an actual trajectory of the projectile for a
particular initial elevation. Let s,() and z,(¢) be the
same quantities of a corresponding point on the

constructed trajectory of the projectile. Then
cumulative errors Ey(f) and E,(r) in S;, () and z,(1),
respectively, in the power of h are expressed as

E(t)= s,(t)—s,()=dh+dh® + dsh® + ...,
(15)

E,(1) = z,(t) — () = eh + e;h* + esh° + ...,
(16)

where d and e are constants. The largest integer p
such that

| El=0hP) a7

then the order of the method? is n.

The error terms for p=1, 2, 3 and 4 have been
estimated. For p=1, 2, 3 it has been observed that
the pth term dominates, while remaining terms are
almost negligible or sum of them is negligible. The
magnitudes of the error terms versus time for p =3
in a typical case’, are plotted in Figs 1 and 2. Here,
the continuous lines represent the first-order term,
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Figure 1. Error terms in s values (y =45° and ho = 0.125)
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Figure 2. Error terms in z values (y = 45° and kg = 0.125)
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dotted lines the second-order term and dashed lines
the third-order term. The continuous and dotted
lines are almost reflection of one another wrt
zero-line. Overall effect due to these two terms is
negligible. The third-order term dominates. This
shows that the truncation error is of the third-order.
Hence, the method is a second-order method.

Further, the constructed trajectories have been
compared with a reference trajectory computed
applying the Runge-Kutta method using the
following measure of deviation:

1ku=\/6—33—§+g—ak—a (18)
ss+2z

The barred quantities are corresponding to the
reference trajectory. In Fig. 3, maximum values of
the deviation of analytical trajectories in the entire
flight time are plotted versus step size. As the step
size decreases, the maximum deviation decreases
showing convergence of constructed trajectories to
the reference trajectories. It was also found that the
computational time of constructed trajectories is
about 15 per cent less than those obtained by the
Runge-Kutta fourth-order method with the same
step size.

4. ALGORITHM FOR LEAD ANGLE
COMPUTATION

A new faster algorithm for lead angle
computation based on the closed-form solution has
been described. This algorithm takes current position
and tracking speed of the target as inputs. Assuming
straight-line path for the target, it computes
required firing angles for a possible interception
with a projectile to be launched from the origin.

4.1 Steps of the Algorithm

The algorithm consists of two phases of
computations. In the first phase, an approximate
time for the target and projectile to arrive at an
equal horizontal range is determined. In the second
phase, a projectile trajectory is found, such that the
miss-distance is within the given limit. First six
steps given below are of the phase 1 of the

algorithm. The remaining steps are of phase 2.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

The given present point of the target be
(% Ya» 24)- From the tracking speed,

velocity (uy4, vy, w,), of the target is com-
puted.
Using a suitable time step, say dt ;, the

time (f) required for the target and the
projectile to arrive at equal horizontal
range is determined. Initially, 7 is taken
to be equal to dt,.

Position of the target at ¢ is computed as
X =xg+uyt
Vi=Vat 7t (19)
4 =24+t Wyt

where s, is horizontal range.

The 7y, of the gun is taken as

1 L
Yo =tan (s’]

The projectile position (s, z) at f is com-
puted from Eqns (9) and (10). In these
computations, the whole time of flight of
the projectile, i.e., ¢ is taken as a single-
time interval.

If ¢ is equal to dt;, then add d#, to 7 and go

back to Step 3. If the distance between
the target and the projectile is not decreas-
ing as time increases then an interception
may not be possible, and stop. Otherwise,
if s is greater than s,, g0 to next step, else

add dt, to rand go back to Step 3.

Increment 7y, by

dy=tan™ [ﬁ} (20)

5y

By dividing # into small intervals of size
dt,, the projectile trajectory is computed
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till its range becomes close to s, but less. Step 11  If (t,+dt) is very close to f, then go to
Let s and z be the horizontal range and next step. Otherwise set t=1.+dt and
height of such a position, respectively. recalculate s, for time 7 using Eqn (19)
Lett,, V. and v, be the time of flight, cur- and go back to the previous step.

rent velocity-and elevation.of the projec- Step 12 The height of the target (z,) in # is com-

tile trajectory, respectively.

puted using Eqn (19). The incremental

Step9  If y.is non-positive, then an interception height dz achieved by the projectile in
may not be possible in the ascending time dt is computed using Eqn (10). If
mode of proje‘ctile flight, and stop. difference between gz, and (z+dz) is
Otherwise go to next step. greater than given miss-distance then go

Step 10  Let ds =s,—s. Time dt required for the back to Step 7. Otherwise, the current

projectile to traverse further the horizon-
tal range equal to ds, is computed using
inverted form of Eqn (9), i.e.,

1 Cds
dt= cv. (exp (cos ('Yc))— l}

position of the target may be taken as a
possible impact point. The current value
of Y is the required lead elevation angle ot
the gun. The azimuth angle of the impact
point gives required lead azimuth angle.
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Figure 3. Maximum deviation versus step size plots of trajectories with various initial elevation
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The increment given to %y, in Step 7 is based on
a well-known fact in ballistics. Let d be the vertical
miss-distance between a projectile trajectory and a
point above the trajectory. Let B be the initial
elevation of the trajectory and «, the angle
subtended by d at the origin. A trajectory of the
projectile with an initial elevation angle of o + B, is
closer to the point than the previous trajectory.

4.2 Results

An experiment has been conducted to evaluate
the performance of the algorithm considering a
typical shell. An arbitrary point in space is taken as
the present position of a target, and an arbitrary
target tracking speed is assumed. A sample set of
such target positions and tracking speeds in
spherical coordinate system is given in Table 1.

Table 1. Input data in spherical coordinate system

Current target position -Rate of change of

scheme is used to compute the shell trajectory. This
is to validate the algorithm. Although actual
miss-distances are high compared to computed
miss-distance, they are acceptable for the order of
the ranges considered.

Table 2. Performance results of the algorithm

Firing angles Time of  Miss-

Data : : Computation
No. Azimuth Elevation flight(s) distance time (s)
(deg) (deg) (m)

1 -13.28 13.77 2.61 1.61 0.0077
2 48.13 16.45 3.02 0.77 0.0110
3 110.88 16.37 342 0.75 0.0126
4 174.79 17.65 3.84 331 0.0137
5 240.00 18.27 4.8 3.12 VuLB/
6 -53.22 24.59 4.78 1.52 0.0214
7 14.45 16.60 537 0.54 0.0231
8 84.02 8.91 6.31 3.50 0.0264
9 141.72 14.12 4.47 2.47 0.0220
10 180.00 9.70 441 2.03 0.0187

Data
No. Range Azimuth Elevation Range Azimuth Elevation

(m) (deg) (deg) (m)  (deg) (deg)

1 3000 0 5 -350 -4 25
2 3400 60 8 -350 -3 2.0
3 3800 120 11 =350 -2 1.0
4 4200 180 14 -350 -1 0.5
S 4600 240 17 =350 0 0.0
6 5000 300 20 -350 1 0.5
7 5400 360 23 -350 2 -1.0
8 5800 420 26  -350 3 -20
9 4500 480 29 -350 4 -25
10 4500 540 32 =350 0 -4.0

Table 2 contains lead angles computed using
the algorithm for sample data points of Table 1. In
these computations, df {=0.1, dt,=0.05 and
miss-distance d=0.01 m have been used. The
miss-distances and times of flight are calculated
offline, once the lead angles are computed by the
algorithm. In the offline calculations, the
Runge-Kutta fourth-order numerical integration

5. CONCLUSION

The results validate the closed-form solution.
The fact that the solution is invertible may increase
its usefulness in many applications.
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