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Abstract.  Pressure and Temperature in different metals including radioactive materials behind 

converging shock waves, is simulated using generalized form of equation of state.  Tait’s equation 
of state of metals,  is valid for pressures of the range of few mega bars and takes into account 
only elastic pressures. At such high pressures, metal undergo phase change and normal equation 
of state no more is valid. At such  pressures, temperatures in metals becomes very high and  
thermal and excitation pressures dominate over elastic pressure.  It is observed that as shock 
approaches the center of sphere, excitation pressure dominates elastic as well as thermal 
pressure.  
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1. Introduction 
 

Simulation of high pressure and temperature generated by imploding shock 
waves through condensed media, such as metals and radioactive materials, is of 
great theoretical and practical importance.   Behavior of metals under  high 
pressures has been analyzed by many authors [1-4], by taking into account, the 
general Hugoniot relationship between shock velocity and particle velocity. This 
linear equation fails when we analyze the material undergoing crystallographic 
phase change under high pressure. Thus, knowledge of the thermodynamic 
properties of the materials is necessary to study their behavior under high 
pressures and temperatures. Although, no appreciable [2] difficulties are 
encountered in calculating the thermodynamic properties of gases, a theoretical 
description of the thermodynamic properties of solids and liquids at high pressure 
generated by very strong shocks, present a very complex problem. 
 
        Variation of material parameters under shock loading has been studied by 
Singh and Renuka [5], by taking thermodynamic properties of the materials into 
account.  In this paper, total energy of system is taken as sum of cold, excitation 

and thermal energy.  By taking thermal energy as TCV ,with CV constant, it was 

shown that discontinuities in pressure can be removed at ultra high pressure.  In 
this process, a very strong compression of a condensed medium generates a 
colossal internal pressure, even in the absence of heating due only to the 
repulsive forces between the atoms.   The material is also very strongly heated by 
shock waves and, this results in the appearance of a pressure associated with the 
thermal motion of atoms.  It is known that thermal energy is not linear function of 
temperature and CV also varies with temperature.  In the present paper we have 
taken Einstein Equation for thermal energy and have studied the pressure and 
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temperature variations behind the converging shock waves. Results of variation of 
pressure by conventional method and by present method are compared in table-
3. 
  

2. Formulation of the Problem 
 
        It is assumed that a spherical shock wave is moving from the surface of a 
metal (or radioactive material) sphere towards its center.  Generalised thermal l 
energy of  materials  given by Einstein Equation of state , 
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Is used along with jump conditions [2] to get expressions for pressure and 

temperature behind imploding shock waves. In equation (1) N, h, , k  are 
Avagadro‟s Number, Plank‟s constant, natural frequency of solid  material, and 
Boltzman‟s constant respectively. 

Excitation energy of metals is given by[2,5]  
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where me is the electron mass, and  Ne is the number of free electrons per unit 
volume of the metal. 

Cold energy is given by, 

 dVPE cc                                                                                                (2b) 

Equations for cold, thermal and excitation pressure  are, 
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where V is specific volume and [5], 
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Using equations(1)-(3),  total pressure P and energy E behind the shock front is 
obtained, 
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Here ,/ kh is Debye‟s constant and strengthShock
0


 .  We observe 

from relations (4) that pressure P is function of density ratio   and temperature T.  

We take  as the independent parameter and express all other paraameters in 

terms of .  Elliminating U and u from equations (1) of [2], one gets, 

EPP  00 2)2)(1(                                                                                          (5) 

where P=P2-P0 and E=E2-E0. 

Differentiating this equation with respect to , we get, 
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Using equations (4) in (5) and after some algebraic calculations, we get, 
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We get T in terms of , from this equation, and then using equation (4) for  P, 
other parameters can be computed from, 
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In the above equations, natural frequency of the metal is slightly complex 
parameter.  This is computed by replacing it by Debye‟s temperature given by, 

 

kh /                                                                                               (11) 

            
Values of Debye‟s temperature for different metals is given in table -2, and basic 
parameters are given in table-1.  

3.  Solution of the problem 
 
The equations (1) to (4) are solved to get the pressure, temperature, shock 

velocity and particle velocity of the material behind the shock front. These 

parameters are expressed in terms of  and T.  It is not possible to solve these 

equations explicitly in terms of one parameter, say . Therefore temperature is 
expressed in differential form and evaluated by integrating equation (7) using  
Runge –Kutta method of fourth order. 

 
 In order to express pressure and temperature in terms of the distance „r‟ of 
the shock front from the center of the sphere, we use Energy Hypothesis [6].  
Transmitted pressure due to the initial compression of the metal by the shock 
transmitted from explosive to material at its outer boundary is calculated using 
mismatch conditions [6]. 
 

Variation of  as the shock moves from the surface of metallic sphere to its 
apex is calculated by using energy hypothesis  [6] as, 
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where index „i‟ denotes, values at the explosive- material boundary.  Energy  )(E   

is given by  
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where )(E  is given by equation (4b). 

Knowing   as a function of r/r0, other parameters are evaluated from equations 
(2)-(4). 
 

4 Results and Discussion 
 

In this paper, we have considered five materials, of which two are  
radioactive in nature (Table 1).  
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Variation of pressure for Al, Fe, Stainless Steel (Type 404), Molybdenum 
(Mo), and Iridium is shown in Figure 1, where as variation of temperature for 
these metals is given in figures 2.  Transmitted pressure in Aluminum is low  at 
the metal-explosive interface but rises fast and becomes infinite at radius equal to 
0.3. Similarly pressure in Iron grows faster than Stainless steel. In Molybdenum 
(Mo), pressure rise is slow as compared to lighter metals, and becomes infinite at 
radius ratio 0.1.  In figure -3, we have plotted variation of cold, thermal and elastic 
pressures in Iron.  It is seen that in the beginning thermal and elastic pressures 
are less than cold pressure but ultimately, thermal pressure and excitation 
pressure increase and become more than elastic pressure.  Excitation pressure 
increases very fast and becomes maximum at radius 0.3 and then starts reducing. 
 

It has been observed that as the density of material increases, its 
maximum compression as well as transmitted pressure from explosive decrease 
(Table-2).   
 

Conclusion 
 
 In studying the pressure variation across the shock using Hugoniot 
equation of state, it has been observed that at high pressures, certain materials  
show sudden increase in pressure values or even a discontinuity in the pressure 
curve as the shock wave converges from the surface of the sphere to its center 
[5]. This is because this equation does not take into account the thermal and 
excitation energy of metals.  Figure-3 gives three pressure components for a 
typical metal, say Iron. It shows  that, PT and Pe are of same order initially, but 
ultimately Pe becomes much more that PT . Near the centre, effect of excitation 
pressure is to expand where as it is resisted by elastic pressure, which creates a 
uncertainty at such points, resulting in the abnormal behavior of Pe curve.   
Thermal pressure first increases and then becomes almost constant and when 
shock approaches near the centre, again rises.  Figure-1 gives pressure 
variations, where as figure- 2 gives variation of temperature as shock converges.    
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Table 1 Data used in this paper 

 
 

Material A 
 Bars 

O  at 
boundary 

n  
erg/g.deg

2 

 
g/cm3 

E0 
108 

erg/g 

Al 1.8200
e+010 

2.0 1.35 4.352 500 2.785 16.1 

SS 3.3233
e+010 

2.17 1.49 4.96 540.6 7.896 12.9 

Fe 1.5010
e+010 

1.69 1.56 6.68 541 7.85 12.85 

Mo 6.8150
e+010 

1.520 1.39 3.932 495 10.206 7.2 
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Table 2.  Comparison table showing pressure values at few points 
 

Sr. 
No 

Metal Debey‟s 
Temperature


oK 

  
i  max  

1. 
2. 
3. 
4. 
5. 

Aluminum 
Iron 
Stainless Steel 
Molybdenum 
Iridium 

428 
470 
470 
450 
420 

2785 
7850 
7896 
10206 
10484 

1.25213 
1.2146 
1.1689 
1.09422 
1.08848 

1.31154 
1.2437 
1.1899 
1.1035 
1.1035 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure-1: Variation of pressure Vs dimensionless radius for different 
materials 
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Figure-2: Variation of temperature Vs dimensionless radius for different 
materials 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Comparison of three components of pressure 
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