

 1

LECTURE SEVEN
RESOURCEES

7.1 Introduction

It can be observed that virtually every windows application use resources. The
definition for the resources such as –Menus, Icon, Cursor, Bitmap etc. is written
with a few line of code in the. RC resource script file. The advantage of
resources is that they are loaded into the memory only when required. A
resource compiler (RC-Exe) is used for compiling the RC resource script file,
which output a .Res file. Further this .RC file linked with the .exe file at the
linking process, to give the final executable file.

Resources can be used in your application program by two methods-
§ First by writing the resources script file that includes definition of resources.
§ Second using the resource editor.

Writing a Resource Script file

For writing a resource script file a text editor is required, after writing few lines of
code in the editor which defines the particular resource, the file is saved with .RC
extension. For example;

ICON.RC

My App ICON Icon.ico //File1 singleline resource type

CURSOR.RC

My App CURSOR Cursor.cur //File2 single line resource type

MENU.RC

#include "mymenu.h"
MyMenu MENU
BEGIN
POPUP"&File"
BEGIN
 MENUITEM "New" IDM_NEW
 MENUITEM "Open" IDM_OPEN
MENUITEM SEPARATOR
MENUITEM "Exit" IDM_EXIT
END

 2

POPU "&Edit"
BEGIN

MENUITEM "Cut" IDM_CUT
 MENUITEM "Copy" IDM_COPY
MENUITEM "Paste" IDM_PASTE
MENUITEM "Exit" IDM_EXITEND
POPUP"&Help"
BEGIN
 MENUITEM "Window Application" IDM_WINDOW
END
END

There are five single line resources script types:
ICON
CURSOR
BITMAP
FONT
Message Table

There are five multiple-line resource script types:
Menu
Dialog
Acceletors
Rcdata
String Table

7.2 MENUS

Every window application that interacts with the user selection, and act upon
it uses menus. Generally two types of menus are used.

Main Menu
This menu is a top – level menu of the application program in which the
items are visible throughout the program. Each item is associated with a
particular action and acts depending upon the particular selection see fig-7.1

 Fig 7.1: Top level Menu

 3

Sub Menu
This menu is a drop-down pop-up menu, in which the items are attached
with the top-level menu. These items become visible when a particular top-
level menu item is selected. See figure 15.2

Fig 7.2 : Sub Meu

In this section we will discuss two way of creating menus for your
application program. The first one is accomplished by creating your own
resource file, while the second one uses the resource editor.
In addition to above specified menus of floating, stand alone pop-up menus
is also available.

7.3. CREATING RESOURCE FILE (.RC)

A few lines of code can define a menu. The file should have .RC extension
(so as to identify as resources file). The following example produces the
menu structure shown in fig.15.3
#include "mymenu.h"
MyMenu MENU
BEGIN
POPUP"&File"
BEGIN
 MENUITEM "New" IDM_NEW
 MENUITEM "Open" IDM_OPEN
MENUITEM SEPARATOR

 4

MENUITEM "Exit" IDM_EXIT
END
POPU "&Edit"
BEGIN

MENUITEM "Cut" IDM_CUT
 MENUITEM "Copy" IDM_COPY
MENUITEM "Paste" IDM_PASTE
MENUITEM "Exit" IDM_EXITEND
POPUP"&Help"
BEGIN
 MENUITEM "Window Application" IDM_WINDOW
END
END

Menu header file mymenu.h

#define IDM_NEW1
#define IDM_OPEN2
#define IDM_EXIT3
#define IDM_CUT4
#define IDM_COPY5
#define IDM_PASTE6
#define IDM_WINDOW7

LRESULT CALLBACK WndProc(HWND,UINT,WPARAM,LPARAM)

Fig 7.3 : Menu structure

 5

It should be noted that the ampersand (&) symbol used with menu option lets you
create keyboard alternatives for clicking menu items with the mouse. The
characters followed by ‘&’ is underlined in the menu; using keyboard a user can
select the item by pressing the Alt Key and simultaneously pressing the key for
the underlined letter.

7.4. ATTACHING MENU TO YOUR APPLICATION WINDOW
A few lines of code in the resource file (file name) is not capable of attaching
menu to the application window. For this we have to attach the menu to the
window’s class definition in the WinMain () function. Setting lpszMenu Name of
the WNDCLASS structure to point to the Menu name can do this. Now it’s the
task of Register Class () function to associate this menu to window application
that is created by this class. The other method of attaching menu to application
program window is by using CreateWindow () and LoadMenu () function.
The following few line of code loads the menus.
Load Menu ():
Load menu loads the user menu from the resource file and returns the handle
of the menu. If it is used in WinMain() function then the user menu is loaded.
If it is used in wndproc() function then depending upon the value of menu
handle, particular menu is loaded.

The syntax

HMENU LoadMenu (HINSTANCE hlnst, LPSTR lpMenuName);

Parameters

hlnst: The handle of the instance for the module that contains the
menu definition in the resource data.

LpMenuName: A pointer to a null terminated string which is a menu

name that is to be loaded. Instead, we can also use MAKEINTRESOURCE
macro that identify the resource identifier.
 The following lines of code in the WinMain() function shown below
has the same effect as we have seen in fig. 15.3.

HMENU hmenu;/handle to the menu
Wc.lpszMenuName=NULL;//no original menu definition
Hmenu=LoadMenu(hlnst,”hmenu”);//loading menu
Hwnd=CreateWindow(“MyWindow”,
 “My Window”,
WS_OVERLAPPEDWINDOW /WS_VSCROLL / WS_HSCROLL,

 6

 100,
 100,
 300,
 300,
 NULL
 Hmenu,
 Hlnst,
 NULL);
7.5.MENU MESSAGE

Window send the WM_COMMAND message to WndProc(user defiend
function for taking the action over the messages received) function every
time the menu item is selected. But for the system menu the
WS_SYSCOMMAND message is sent. Table given below are the some
menu message along with brief description.
WM_COMMAND menu messages.
WM_INITMENU main menu is selected
WM_POPUP popmenu is selected.
WM_MENUCHAR activated when user selects any other

shortcut key defined by & it is sent even if
the menu item is grayed.

WM_MENUSELECT it is sent even if the menu item is grayed.

Following program creates a used defined menu.

Program 7.1 creation of User defined menu
//Program 7.1 Creation of user defined menu

#include <windows.h>
#include "mymenu.h"

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

int WINAPI WinMain(HINSTANCE hInst, HINSTANCE hPrev,
 LPSTR nCmd, int nShow)
{
 WNDCLASS wc;
 HWND hwnd;
 MSG Msg;

 7

 wc.cbClsExtra=NULL;
 wc.cbWndExtra = 0;
 wc.hInstance = hInst;
 wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 wc.lpfnWndProc =WndProc;
 wc.lpszMenuName = "MyMenu";
 wc.lpszClassName = "MyWindow";

 if(!RegisterClass(&wc))
 {
 MessageBox(NULL, "Not Registered", "SEE THAT", MB_OK);
 return 0;
 }
 /* HMENU hmenu;//handle to menu
 wc.lpszClassNameMenuName=NULL;//no original menu definition
 hmenu=LoadMenu(hInst, "hmenu");//loading menu
 */
 hwnd = CreateWindow(
 "MyWindow",
 "MyWindow",
 WS_OVERLAPPEDWINDOW|WS_VSCROLL|WS_HSCROLL,
 CW_USEDEFAULT, CW_USEDEFAULT, 300,300,
 NULL, NULL, hInst, NULL);

 if(hwnd == NULL)
 {
 MessageBox(NULL, "Window Creation Failed!", "Error!",
 MB_ICONEXCLAMATION | MB_OK);
 return 0;
 }

 ShowWindow(hwnd, nShow);

 while(GetMessage(&Msg, NULL, 0, 0))
 {

 8

 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }
 return Msg.wParam;
}

LRESULT CALLBACK WndProc(HWND hWnd, UINT msg, WPARAM
wParam, LPARAM lParam)
{
 switch(msg)
 {
 case WM_COMMAND:
 {
 switch(wParam)
 {
 case IDM_NEW:

 MessageBox(NULL, "NEW was clicked", "VP SINGH",
MB_OK);

 break;
 case IDM_OPEN:
 MessageBox(NULL, "Open was clicked", "VP SINGH",
MB_OK);
 break;
 case IDM_EXIT:
 MessageBox(NULL, "EXIT was clicked", "VP SINGH",
MB_OK);
 break;
 case IDM_CUT:
 MessageBox(NULL, "CUT was clicked", "VP SINGH", MB_OK);
 break;
 case IDM_COPY:
 MessageBox(NULL, "COPY was clicked", "VP SINGH",
MB_OK);
 break;

 case IDM_PASTE:

 9

 MessageBox(NULL, "PASTE was clicked", "VP SINGH",
MB_OK);
 break;
 case IDM_WINDOW:
 MessageBox(NULL, "WINDOW was clicked", "VP SINGH",
MB_OK);
 break;
 }
 break;
 }
 case WM_DESTROY:
 MessageBox(hWnd,"Window is clsed","VP Singh",MB_OK);
 break;
 default;
 return DefWindowProc(hWnd,
msg,wParam,lParam);

 }
 return 0;
}

7.6. ICON, CURSOR AND BITMAPS

All the icons, cursors and bitmaps are created by using an image editor
provided by the Complier that is capable of creating windows 98 programs.

7.6.1. ICON
Basically Icons comes in three sizes:
 Small : 16 x 16 size
 Standard : 32 x 32 size
 Large : 48 x48 size
All the icons can be defined with a single icon file.

