
 1

LECTURE-2

A Simple Window

In this lecture we will study a program, how to make a simple window ? Well it's
not entirely that simple I'm afraid. It's not difficult once you know what you're
doing but there are quite a few things you need to do to get a window to show up.

It is always better to do things first and learn them later, so here is the code to a
simple window which will be explained shortly. Before we write a program, we will
like to discuss about few definitions to be used in the program.

2.1 WINDOW 98 DEFINES SEVERAL STRUCTURES.

Apart from the datatype discussed in lesson -1, windows define structures:

• MSG-Holds window 98 message.
• WNDCLASS- defines a window class.
• WNDCLASSEX;- defines a window extended class with two extra

members.

2.2 WINDOW MESSAGES

The events are the user action or the occurrence that the windows handle. For
example clicking at the mouse, dragging a window, pressing a key or drawing a
pictures are the events that window record. These events act as messages for
the window and each message is placed in a message queue for further
processing. For handling these messages, window program provides a function
wndproc() or windowproc(). Windows communicate with the program through
this function. It receives the messages by means of arguments.

2.3 PROGRAM TO CREATE A WINDOW.

 #include <windows.h>

const char g_szClassName[] = "myWindowClass";

// Step 4: the Window Procedure
LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM
lParam)
{
 switch(msg)
 {
 case WM_CLOSE:
 DestroyWindow(hwnd);
 break;
 case WM_DESTROY:

 2

 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hwnd, msg, wParam, lParam);
 }
 return 0;
}

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 WNDCLASSEX wc;
 HWND hwnd;
 MSG msg;

 //Step 1: Registering the Window Class
 wc.cbSize = sizeof(WNDCLASSEX);
 wc.style = 0;
 wc.lpfnWndProc = WndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInstance;
 wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
 wc.lpszMenuName = NULL;
 wc.lpszClassName = g_szClassName;
 wc.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 if(!RegisterClassEx(&wc))
 {
 MessageBox(NULL, "Window Registration Failed!", "Error!",
 MB_ICONEXCLAMATION | MB_OK);
 return 0;
 }

 // Step 2: Creating the Window
 hwnd = CreateWindowEx(
 WS_EX_CLIENTEDGE,
 g_szClassName,
 "The title of my window",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT, 240, 120,
 NULL, NULL, hInstance, NULL);

 if(hwnd == NULL)
 {
 MessageBox(NULL, "Window Creation Failed!", "Error!",
 MB_ICONEXCLAMATION | MB_OK);
 return 0;
 }

 ShowWindow(hwnd, nCmdShow);
 UpdateWindow(hwnd);

 3

 // Step 3: The Message Loop
 while(GetMessage(&Msg, NULL, 0, 0) > 0)
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }
 return Msg.wParam;
}

For most part this is the simplest windows program you can write that actually
creates a functional window, a mere 70 or so lines. If you got the first example to
compile then this one should work with no problems.

Step 1: Registering the Window Class

A Window Class stores information about a type of window, including it's Window
Procedure which controls the window, the small and large icons for the window,
and the background color. This way, you can register a class once, and create as
many windows as you want from it, without having to specify all those attributes
over and over. Most of the attributes you set in the window class can be changed
on a per-window basis if desired.

A Window Class has NOTHING to do with C++ classes.

const char g_szClassName[] = "myWindowClass";
The variable above stores the name of our window class, we will use it shortly to
register our window class with the system.

 WNDCLASSEX wc;
 wc.cbSize = sizeof(WNDCLASSEX);
 wc.style = 0;
 wc.lpfnWndProc = WndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInstance;
 wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
 wc.lpszMenuName = NULL;
 wc.lpszClassName = g_szClassName;
 wc.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 if(!RegisterClassEx(&wc))
 {
 MessageBox(NULL, "Window Registration Failed!", "Error!",
 MB_ICONEXCLAMATION | MB_OK);

 4

 return 0;
 }

Members

cbSize
Specifies the size, in bytes, of this structure. Set this member to
sizeof(WNDCLASSEX). Be sure to set this member before calling the
GetClassInfoEx function.

style
Specifies the class style(s). Styles can be combined by using the bitwise OR (|)
operator. This member can be any combination of the following values:
Value Action
CS_BYTEALIGNCLIENT Aligns the window's client area on the byte

boundary (in the x direction). This style affects
the width of the window and its horizontal
position on the display.

CS_BYTEALIGNWINDOW Aligns a window on a byte boundary (in the x
direction). This style affects the width of the
window and its horizontal position on the
display.

CS_CLASSDC Allocates one device context to be shared by all
windows in the class. Because window classes
are process specific, it is possible for multiple
threads of an application to create a window of
the same class. It is also possible for the threads
to attempt to use the device context
simultaneously. When this happens, the system
allows only one thread to successfully finish its
drawing operation. For more information, see
Device Contexts.

CS_DBLCLKS Sends double-click messages to the window
procedure when the user double-clicks the
mouse while the cursor is within a window
belonging to the class.

CS_GLOBALCLASS Allows an application to create a window of the
class regardless of the value of the hInstance
parameter passed to the CreateWindowEx
function. If you do not specify this style, the
hInstance parameter passed to the
CreateWindow (or CreateWindowEx)
function must be the same as the hInstance
parameter passed to the RegisterClassEx
function.

 5

 You can create a global class by creating the
window class in a dynamic-link library (DLL)
and listing the name of the DLL in the registry
under the following keys:

 HKEY_LOCAL_MACHINE\Software
\Microsoft\Windows NT\
CurrentVersion\Windows\AppInit_DLLs

 Whenever a process starts, the system loads the
specified DLLs in the context of the newly
started process before calling the entry-point
function in that process. The DLL must register
the class during its initialization procedure and
must specify the CS_GLOBALCLASS style.

CS_HREDRAW Redraws the entire window if a movement or
size adjustment changes the width of the client
area.

CS_NOCLOSE Disables Close on the window menu.
CS_OWNDC Allocates a unique device context for each

window in the class. For more information, see
Device Contexts.

CS_PARENTDC Sets the clipping region of the child window to
that of the parent window so that the child can
draw on the parent. A window with the
CS_PARENTDC style bit receives a regular
device context from the system's cache of
device contexts. It does not give the child the
parent's device context or device context
settings. Specifying CS_PARENTDC enhances
an application's performance. For more
information, see Device Contexts.

CS_SAVEBITS Saves, as a bitmap, the portion of the screen
image obscured by a window. The system uses
the saved bitmap to re-create the screen image
when the window is removed. The system
displays the bitmap at its original location and
does not send WM_PAINT messages to
windows obscured by the window if the
memory used by the bitmap has not been
discarded and if other screen actions have not
invalidated the stored image. This style is
useful for small windows (for example, menus
or dialog boxes) that are displayed briefly and
then removed before other screen activity takes
place. This style increases the time required to

 6

display the window, because the system must
first allocate memory to store the bitmap.

CS_VREDRAW Redraws the entire window if a movement or
size adjustment changes the height of the client
area.

lpfnWndProc

Pointer to the window procedure. You must use the CallWindowProc function to
call the window procedure. For more information, see WindowProc.

cbClsExtra
Specifies the number of extra bytes to allocate following the window-class
structure. The system initializes the bytes to zero.

cbWndExtra
Specifies the number of extra bytes to allocate following the window instance.
The system initializes the bytes to zero. If an application uses WNDCLASSEX to
register a dialog box created by using the CLASS directive in the resource file, it
must set this member to DLGWINDOWEXTRA.

hInstance
Handle to the instance that the window procedure of this class is within.

hIcon
Handle to the class icon. This member must be a handle of an icon resource. If
this member is NULL, an application must draw an icon whenever the user
minimizes the application's window.

hCursor
Handle to the class cursor. This member must be a handle of a cursor resource. If
this member is NULL, an application must explicitly set the cursor shape
whenever the mouse moves into the application's window.

hbrBackground
Handle to the class background brush. This member can be a handle to the
physical brush to be used for painting the background, or it can be a color value.
A color value must be one of the following standard system colors (the value 1
must be added to the chosen color). If a color value is given, you must convert it
to one of the following HBRUSH types:

COLOR_ACTIVEBORDER
COLOR_ACTIVECAPTION
COLOR_APPWORKSPACE
COLOR_BACKGROUND
COLOR_BTNFACE
COLOR_BTNSHADOW
COLOR_BTNTEXT
COLOR_CAPTIONTEXT
COLOR_GRAYTEXT
COLOR_HIGHLIGHT
COLOR_HIGHLIGHTTEXT
COLOR_INACTIVEBORDER

 7

COLOR_INACTIVECAPTION
COLOR_MENU
COLOR_MENUTEXT
COLOR_SCROLLBAR
COLOR_WINDOW
COLOR_WINDOWFRAME
COLOR_WINDOWTEXT

The system automatically deletes class background brushes when the class is
freed. An application should not delete these brushes, because a class may be used
by multiple instances of an application.

When this member is NULL, an application must paint its own background
whenever it is requested to paint in its client area. To determine whether the
background must be painted, an application can either process the
WM_ERASEBKGND message or test the fErase member of the
PAINTSTRUCT structure filled by the BeginPaint function.

lpszMenuName
Pointer to a null-terminated character string that specifies the resource name of
the class menu, as the name appears in the resource file. If you use an integer to
identify the menu, use the MAKEINTRESOURCE macro. If this member is
NULL, windows belonging to this class have no default menu.

lpszClassName
Pointer to a null-terminated string or is an atom. If this parameter is an atom, it
must be a global atom created by a previous call to the GlobalAddAtom function.
The atom, a 16-bit value, must be in the low-order word of lpszClassName; the
high-order word must be zero.

If lpszClassName is a string, it specifies the window class name.

hIconSm
Handle to a small icon that is associated with the window class. If this member is
NULL, the system searches the icon resource specified by the hIcon member for
an icon of the appropriate size to use as the small icon.

Don't worry if that doesn't make much sense to you yet, the various parts that
count will be explained more later. Another thing to remember Is, to not try and
remember this stuff. I rarely (never) memorize structs, or function parameters,
this is a waste of effort and, more importantly, time. If you know the functions you
need to call then it is a matter of seconds to look up the exact parameters in your
help files. If you don't have help files, get them. You are lost without. Eventually
you will come to know the parameters to the functions you use most.

We then call RegisterClassEx() and check for failure, if it fails we pop up a
message which says so and abort the program by returning from the WinMain()
function.

 8

Step 2: Creating the Window

Once the class is registered, we can create a window with it. You should look up
the paramters for CreateWindowEx() (as you should ALWAYS do when using a
new API call)., Prototype of CreatWindowEX() is as:

HWND CreateWindowEx(
 DWORD dwExStyle, // extended window style
 LPCTSTR lpClassName, // pointer to registered class name
 LPCTSTR lpWindowName, // pointer to window name
 DWORD dwStyle, // window style
 int x, // horizontal position of window
 int y, // vertical position of window
 int nWidth, // window width
 int nHeight, // window height
 HWND hWndParent, // handle to parent or owner window
 HMENU hMenu, // handle to menu, or child-window identifier
 HINSTANCE hInstance, // handle to application instance
 LPVOID lpParam // pointer to window-creation data
);

which is written in program as:

 HWND hwnd;
 hwnd = CreateWindowEx(
 WS_EX_CLIENTEDGE,
 g_szClassName,
 "The title of my window",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT, 240, 120,
 NULL, NULL, hInstance, NULL);

WS_EX_CLIENTEDGE : is the extended windows style, WS which gives a
sunken inner border around the window. Set it to 0 if you'd like to see the
difference. Also play with other values to see what they do.

Next we have the class name (g_szClassName), this tells the system what kind
of window to create. Since we want to create a window from the class we just
registered, we use the name of that class. After that we specify our window name
or title which is the text that will be displayed in the Caption, or Title Bar on our
window.

The parameter we have as WS_OVERLAPPEDWINDOW is the Window Style
parameter. There are quite a few of these and you should look them up and
experiment to find out what they do. These will be covered more later.

The next four parameters (CW_USEDEFAULT, CW_USEDEFAULT, 320, 240)
are the X and Y co-ordinates for the top left corner of your window, and the width
and height of the window. I've set the X and Y values to CW_USEDEFAULT to

 9

let windows choose where on the screen to put the window. Remember that the
left of the screen is an X value of zero and it increases to the right; The top of the
screen is a Y value of zero which increases towards the bottom. The units are
pixels, which is the smallest unit a screen can display at a given resolution.

Next (NULL, NULL, g_hInst, NULL) we have the Parent Window handle, the
menu handle, the application instance handle, and a pointer to window
creation data. In windows, the windows on your screen are arranged in a
hierarchy of parent and child windows. When you see a button on a window, the
button is the Child and it is contained within the window that is it's Parent. In this
example, the parent handle is NULL because we have no parent, this is our main
or Top Level window. The menu is NULL for now since we don't have one yet.
The instance handle is set to the value that is passed in as the first parameter to
WinMain(). The creation data that can be used to send additional data to the
window that is being created is also NULL.

If you're wondering what this magic NULL is, it's simply defined as 0 (zero).
Actually, in C it's defined as ((void*)0), since it's intended for use with pointers.
Therefore you will possibly get warnings if you use NULL for integer values,
depending on your compiler and the warning level settings. You can choose to
ignore the warnings, or just use 0 instead.

Number one cause of people not knowing what the heck is wrong with their
programs is probably that they didn't check the return values of their calls to see
if they failed or not. CreateWindow() will fail at some point even if you're an
experianced coder, simply because there are lots of mistakes that are easy to
make. Untill you learn how to quickly identify those mistakes, at least give
yourself the chance of figuring out where things go wrong, and Always check
return values!

 if(hwnd == NULL)
 {
 MessageBox(NULL, "Window Creation Failed!", "Error!",
 MB_ICONEXCLAMATION | MB_OK);
 return 0;
 }

After we've created the window and checked to make sure we have a valid
handle we show the window, using the last parameter in WinMain() and then
update it to ensure that it has properly redrawn itself on the screen.

 ShowWindow(hwnd, nCmdShow);
 UpdateWindow(hwnd);

The nCmdShow parameter is optional, you could simply pass in
SW_SHOWNORMAL all the time and be done with it. However using the

 10

parameter passed into WinMain() gives whoever is running your program to
specify whether or not they want your window to start off visible, maximized,
minimized, etc... You will find options for these in the properties of windows
shortcuts, and this parameter is how the choice is carried out.

Step 3: The Message Loop

This is the heart of the whole program, pretty much everything that your program
does passes through this point of control.

 while(GetMessage(&Msg, NULL, 0, 0) > 0)
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }
 return Msg.wParam;

GetMessage() gets a message from your application's message queue. Any time
the user moves the mouse, types on the keyboard, clicks on your window's
menu, or does any number of other things, messages are generated by the
system and entered into your program's message queue. By calling
GetMessage() you are requesting the next available message to be removed
from the queue and returned to you for processing. If there is no message,
GetMessage() Blocks. If you are unfamiliar with the term, it means that it waits
untill there is a message, and then returns it to you.

TranslateMessage() does some additional processing on keyboard events like
generating WM_CHAR messages to go along with WM_KEYDOWN messages.
Finally DispatchMessage() sends the message out to the window that the
message was sent to. This could be our main window or it could be another one,
or a control, and in some cases a window that was created behind the scenes by
the system or another program. This isn't something you need to worry about
because all we are concerned with is that we get the message and send it out,
the system takes care of the rest making sure it gets to the proper window.

Step 4: the Window Procedure

If the message loop is the heart of the program, the window procedure is the
brain. This is where all the messages that are sent to our window get processed.
LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam,
LPARAM lParam)
{
 switch(msg)
 {
 case WM_CLOSE:
 DestroyWindow(hwnd);

 11

 break;
 case WM_DESTROY:
 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hwnd, msg, wParam, lParam);
 }
 return 0;
}

The window procedure is called for each message, the HWND parameter is the
handle of your window, the one that the message applies to. This is important
since you might have two or more windows of the same class and they will use
the same window procedure (WndProc()). The difference is that the parameter
hwnd will be different depending on which window it is. For example when we get
the WM_CLOSE message we destroy the window. Since we use the window
handle that we received as the first paramter, any other windows will not be
affected, only the one that the message was intended for.

WM_CLOSE is sent when the user presses the Close Button or types Alt-F4.
This will cause the window to be destroyed by default, but I like to handle it
explicitly, since this is the perfect spot to do cleanup checks, or ask the user to
save files etc. before exiting the program.

When we call DestroyWindow() the system sends the WM_DESTROY message
to the window getting destroyed, in this case it's our window, and then destroys
any remaining child windows before finally removing our window from the
system. Since this is the only window in our program, we are all done and we
want the program to exit, so we call PostQuitMessage(). This posts the
WM_QUIT message to the message loop. We never receive this message,
because it causes GetMessage() to return FALSE, and as you'll see in our
message loop code, when that happens we stop processing messages and
return the final result code, the wParam of WM_QUIT which happens to be the
value we passed into PostQuitMessage(). The return value is only really useful if
your program is designed to be called by another program and you want to return
a specific value.

Step 5: There is no Step 5

Well that's it! If stuff haven't been explained clearly enough yet, just hang in there
and hopefully things will become more clear as we get into more useful
programs.

