

LECTURE-3

HANDLING MESSAGES

Example: window_click

In lecture two we have written a program for a simple window. Although window
is created but it doesn't do anything except what DefWindowProc() allows it to,
like be sized, maximised, etc... Not really all that exciting.

In the next section we are going to show how to modify what you already have to
do something new.

Okay for starters take the example code for the last window we worked on and
make sure it compiles and runs as expected. Then you can either keep working
on it for the next little bit or copy it to a new project to modify.

We're going to add the capability to show the user what the name of our program
is when they click on our window. Not very exciting, it's basically to get the hang
of handling messages. Lets look at what we have in our WndProc():

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM
lParam)
{
 switch(msg)
 {
 case WM_CLOSE:
 DestroyWindow(hwnd);
 break;
 case WM_DESTROY:
 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hwnd, msg, wParam, lParam);
 }
 return 0;

}
If we want to handle mouse clicks, we need to add a WM_LBUTTONDOWN handler (or
WM_RBUTTONDOWN, WM_MBUTTONDOWN, for right and middle clicks respectively).

If we refers to handling a message this means to add it into the WndProc() of your
window class as follows:

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM
lParam)
{
 switch(msg)
 {
 case WM_LBUTTONDOWN: // <-
 // <- we just added this stuff
 break; // <-
 case WM_CLOSE:
 DestroyWindow(hwnd);
 break;
 case WM_DESTROY:
 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hwnd, msg, wParam, lParam);
 }
 return 0;
}

The order in which you handle your messages rarely matters. Just make sure
you've got your break; after each one. As you can see we added another case into
our switch(). Now we want something to happen when we get to this part of our
program.

First we will present the code we want to add (that will show the user the
filename of our program) and then we will integrate it into our program. Later on we
will probably just show you the code and let you integrate it into your program. This
is of course better for us as we don't have to type as much and it's better for you
because you will be able to add the code into ANY program and not just the ones is
presented here.

GetModuleFileName(hInstance, szFileName, MAX_PATH);
MessageBox(hwnd, szFileName, "The program by VP Singh:", MB_OK |
MB_ICONINFORMATION);

Now this code does not stand on it's own, it can't just be slapped into our code any
old place. We specifically want it to run when the user clicks the mouse button so
this is how we would merge this small bit of code into our skeleton program:

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM
lParam)
{
 switch(msg)
 {
 case WM_LBUTTONDOWN:
// BEGIN NEW CODE
 {
 char szFileName[MAX_PATH];

 HINSTANCE hInstance = GetModuleHandle(NULL);

 GetModuleFileName(hInstance, szFileName, MAX_PATH);
 MessageBox(hwnd, szFileName, "The program by Dr. VP
Singh:", MB_OK | MB_ICONINFORMATION);
 }
// END NEW CODE
 break;
 case WM_CLOSE:
 DestroyWindow(hwnd);
 break;
 case WM_DESTROY:
 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hwnd, msg, wParam, lParam);
 }
 return 0;
}

Note the new set of curly braces {} . These are required when declaring variables
inside a switch() statement.

So if you've added in that code, compile it now. If it works, click on the
window and you should see a box with the name and path of the program file.

You'll notice we've added two variables, hInstance and szFileName.
Look up GetModuleFileName() and you will see that the first parameter is a
HINSTANCE referring to the executable module (our program, the .exe file).
Where do we get such a thing? GetModuleHandle() is the answer. The
references for GetModuleHandle() indicate that passing in NULL will return us "a
handle to the file used to create the calling process", which is exactly what we
need, the HINSTANCE just mentioned. Putting all this information together we
end up with the following declaration:

HINSTANCE hInstance = GetModuleHandle(NULL);

Now on to the second parameter, again turning to our trusty reference manual,
we see that it is " a pointer to a buffer that receives the path and file name of the
specified module" and the data type is LPTSTR (or LPSTR if your references are
old). Since LPSTR is equivalent to char* we can declare an array of char's like
this:

char szFileName[MAX_PATH];

MAX_PATH is a handy macro included via <windows.h> that is defined to the
maximum length of a buffer needed to store a filename under Win32. We also
pass MAX_PATH to GetModuleFileName() so it knows the size of the buffer.

After GetModuleFileName() is called, the buffer szFileName will be filled with a
null terminated string containing the name of our .exe file. We pass this value to
MessageBox() as an easy way of displaying it to the user.

So if you've added in that code, compile it now. If it works, click on the window
and you should see a box with the name of the .exe pop up.

If it doesn't work, here's the full code to the program. Compare it to what you
have and see what, if any, mistakes you made.

WNDCLASSEX structure

Every window that you create has an associated WNDCLASSEX structure. The

WNDCLASSEX structure provides all the information necessary for Windows(tm)

to do perform window related functions like drawing its icon, cursor, menu, calling

the callback function which will receive messages and so on.

The WNDCLASSEX structure is as follows:

typedef struct _WNDCLASSEX {

 UINT cbSize;

 UINT style;

 WNDPROC lpfnWndProc;

 int cbClsExtra;

 int cbWndExtra;

 HANDLE hInstance;

 HICON hIcon;

 HCURSOR hCursor;

 HBRUSH hbrBackground;

 LPCTSTR lpszMenuName;

 LPCTSTR lpszClassName;

 HICON hIconSm;

} WNDCLASSEX;

cbSize

This must always be set to sizeof(WNDCLASSEX).

style

This specifies the class styles. Take a look at your SDK documentation for

the values this member can take.

lpfnWndProc

Pointer to the WndProc which will handle this windows' messages.

cbClsExtra

Number of extra bytes to allocate at the end of the WNDCLASSEX

structure.

cbWndExtra

Number of extra bytes to allocate at the end of the window instance.

hInstance

Identifies the instance that the window procedure of this class is within.

hIcon

Handle to the icon associated with windows of this class.

hCursor

Handle to the cursor for windows of this class.

hbrBackground

Identifies the class background brush.

lpszMenuName

Identifies the menu for windows of this class.

lpszClassName

Pointer to a NULL terminated string or an atom specifying the class of this

structure.

hIconSm

Handle to the small icon associated with this class.

Program to create an interactive window

#include <windows.h>

const char g_szClassName[] = "myWindowClass";

LRESULT CALLBACK WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM
lParam)
{
 switch(msg)

 {
 case WM_LBUTTONDOWN:
 {
 char szFileName[MAX_PATH];
 HINSTANCE hInstance = GetModuleHandle(NULL);

 GetModuleFileName(hInstance, szFileName, MAX_PATH);
 MessageBox(hwnd, szFileName, "This program is:", MB_OK |
MB_ICONINFORMATION);
 }
 break;
 case WM_CLOSE:
 DestroyWindow(hwnd);
 break;
 case WM_DESTROY:
 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hwnd, msg, wParam, lParam);
 }
 return 0;
}

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 WNDCLASSEX wc;
 HWND hwnd;
 MSG Msg;

 wc.cbSize = sizeof(WNDCLASSEX);
 wc.style = 0;
 wc.lpfnWndProc = WndProc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInstance;
 wc.hIcon = LoadIcon(NULL, IDI_APPLICATION);
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
 wc.lpszMenuName = NULL;
 wc.lpszClassName = g_szClassName;
 wc.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

 if(!RegisterClassEx(&wc))
 {
 MessageBox(NULL, "Window Registration Failed!", "Error!",
 MB_ICONEXCLAMATION | MB_OK);
 return 0;
 }

 hwnd = CreateWindowEx(
 WS_EX_CLIENTEDGE,
 g_szClassName,
 "The title of my window",
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT, 240, 120,

 NULL, NULL, hInstance, NULL);

 if(hwnd == NULL)
 {
 MessageBox(NULL, "Window Creation Failed!", "Error!",
 MB_ICONEXCLAMATION | MB_OK);
 return 0;
 }

 ShowWindow(hwnd, nCmdShow);
 UpdateWindow(hwnd);

 while(GetMessage(&Msg, NULL, 0, 0) > 0)
 {
 TranslateMessage(&Msg);
 DispatchMessage(&Msg);
 }
 return Msg.wParam;
}

