
 1

Lesson 4

Understanding messages and events

In this tutorial you will be introduced to the event-driven programming model. You

will learn how Windows uses messages to communicate with applications, how

event based programming works, what callback functions are, and while doing

this create a basic windows application

Program : win4.c

1 #include <windows.h>

2

3 HWND hwndMain; //Main window handle

4

5 // Callback function

6 LRESULT CALLBACK MainWndProc(HWND hwnd,UINT msg,WPARAM

wParam,LPARAM lParam);

7 // Windows entry point

8 int WINAPI

9 WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR

lpCmdLine, INT nCmdShow)

10 {

 2

11 MSG msg; // MSG structure to store messages

12 WNDCLASSEX wcx; // WINDOW class information

13

14 // Initialize the struct to zero

15 ZeroMemory(&wcx,sizeof(WNDCLASSEX));

16 wcx.cbSize = sizeof(WNDCLASSEX); // Window size. Must always be

sizeof(WNDCLASSEX)

17 wcx.style = CS_HREDRAW|CS_VREDRAW |CS_DBLCLKS ; // Class

styles

18 wcx.lpfnWndProc = (WNDPROC)MainWndProc; // Pointer to the

callback procedure

19 wcx.cbClsExtra = 0; // Extra byte to allocate following the wndclassex

structure

20 wcx.cbWndExtra = 0; // Extra byte to allocate following an instance of

the structure

21 wcx.hInstance = hInstance; // Instance of the application

22 wcx.hIcon = NULL; // Class Icon

23 wcx.hCursor = LoadCursor(NULL, IDC_ARROW); // Class Cursor

24 wcx.hbrBackground = (HBRUSH)(COLOR_WINDOW); // Background

brush

25 wcx.lpszMenuName = NULL; // Menu resource

26 wcx.lpszClassName = "Lesson2"; // Name of this class

27 wcx.hIconSm = NULL; // Small icon for this class

28

29 // Register this window class with MS-Windows

30 if (!RegisterClassEx(&wcx))

31 return 0;

32

33 // Create the window

34 hwndMain = CreateWindowEx(0, //Extended window style

35 "Lesson2", // Window class name

 3

36 "Lesson 2 - A simple win32 application", //

Window title

37 WS_OVERLAPPEDWINDOW, // Window style

38 CW_USEDEFAULT,CW_USEDEFAULT, //

(x,y) pos of the window

39 CW_USEDEFAULT,CW_USEDEFAULT, //

Width and height of the window

40 HWND_DESKTOP, // HWND of the parent

window (can be null also)

41 NULL, // Handle to menu

42 hInstance, // Handle to application instance

43 NULL); // Pointer to window creation data

44

45 // Check if window creation was successful

46 if (!hwndMain)

47 return 0;

48

49 // Make the window visible

50 ShowWindow(hwndMain,SW_SHOW);

51

52 // Process messages coming to this window

53 while (GetMessage(&msg,NULL,0,0))

54 {

55 TranslateMessage(&msg);

56 DispatchMessage(&msg);

57 }

58

59 // return value to the system

60 return msg.wParam;

61 }

62

 4

63 LRESULT CALLBACK MainWndProc(HWND hwnd,UINT msg,WPARAM

wParam,LPARAM lParam)

64 {

65 switch (msg)

66 {

67 case WM_DESTROY:

68 // User closed the window

69 PostQuitMessage(0);

70 break;

71 default:

72 // Call the default window handler

73 return DefWindowProc(hwnd,msg,wParam,lParam);

74 }

75 return 0;

76 }

Breaking it up

Messages and the MSG Structure

The MSG structure is what stores the messages received by your application.

Before going any further, lets take a look at the event-driven programming model.

Event driven programming model

Let us understand how event driven programming works.

1. The user clicks the maximize button.

2. Windows tells your application that the maximize button has been

pressed.

3. Your application then redraws its window so that it covers the screen.

Every time windows has to communicate with your application, it sends

messages to your application. Once all initializations have been done and the

 5

window shown on screen, all your application has to do is poll for windows

messages.

The lines upto 51 create and show the window and the lines 52-57 poll for

messages.

The GetMessage() function gets the next message to be processed from the

message queue. GetMessage() returns a non-zero value for every message

other than WM_QUIT. This means that the while loop continues until it is time to

quit.

TranslateMessage() translates virtual key messages to character messages.

DispatchMessage() dispatches the message to a window procedure. This means

that for messages coming to our window, the MainWndProc() is called by

Windows(tm) through DispatchMessage().

How does Windows(tm) know which function to call? Well, we tell Windows(tm)

during WNDCLASSEX initialization [line 18].

WNDCLASSEX structure

Every window that you create has an associated WNDCLASSEX structure. The

WNDCLASSEX structure provides all the information necessary for Windows(tm)

to do perform window related functions like drawing its icon, cursor, menu, calling

the callback function which will receive messages and so on.

The WNDCLASSEX structure has been defined in lecture-3.

Registering your window class

After you've created your window class, you need to tell Windows(tm) about it.

This is done by registering the class with windows. The function call is

RegisterClassEx(..). Once this is done, you can create instances of this window

by calling CreateWindowEx(..) with the proper arguments.

 6

Creating the window

A window is created by calling the CreateWindowEx(..) defined as,

HWND CreateWindowEx(

 DWORD dwExStyle, // extended window style

 LPCTSTR lpClassName, // pointer to registered class name

 LPCTSTR lpWindowName, // pointer to window name

 DWORD dwStyle, // window style

 int x, // horizontal position of window

 int y, // vertical position of window

 int nWidth, // window width

 int nHeight, // window height

 HWND hWndParent, // handle to parent or owner window

 HMENU hMenu, // handle to menu, or child-window identifier

 HINSTANCE hInstance, // handle to application instance

 LPVOID lpParam // pointer to window-creation data

);

Lines 34-43 create the window. If the creation was successful a non-zero handle

is returned by CreateWindowEx after which ShowWindow() shows the window on

the screen.

TIP: It is a good idea to keep referring to these functions in your sdk docs while

reading this tutorial.

 7

Callback functions

A callback function is the one that receives the messages sent to your

application. This is where you do something about the message. We provide a

pointer to this function while defining the window class [line 18].

Callback functions have to be defined as,

LRESULT CALLBACK

function-name(

 HWND hwnd, // Handle of window which received this

message

 UINT msg, // The message

 WPARAM wParam, // Extra information

 LPARAM lParam // Extra information

);

HWND hwnd

 8

The handle of the window is specified so that you know which window to

act upon. This is necessary because you may have created more than

one instance of the window.

UINT msg

This contains the message sent.

WPARAM wParam and WPARAM lParam

wParam and lParam are used to pass extra info about the message. For

example a WM_LBUTTONDOWN (left mouse button down) message will

have the x and y co-ordinates as the upper and lower word of lParam and

wParam will tell if any modifier keys (ctrl, alt, shift) have been pressed.

MainWndProc

63 LRESULT CALLBACK MainWndProc(HWND hwnd,UINT msg,WPARAM

wParam,LPARAM lParam)

64 {

65 switch (msg)

66 {

 ...

The switch statement lets us select which message was sent. There are over 200

messages that windows can send your application. To read about them, just

search for WM_ in your sdk docs.

 9

WM_DESTROY

 ...

67 case WM_DESTROY:

68 // User closed the window

69 PostQuitMessage(0);

70 break;

 ...

The WM_DESTROY message is sent to your application when the user

teminates the application either by clicking the X at the upper right corner,

pressing Alt+F4, or quits the application by other means.

PostQuitMessage() causes GetMessage(..) [line 53] to return false and thus

breaking out of the while loop and exiting the application. The argument to

PostQuitMessage is the return value to the system.

 10

DefWindowProc(..)

What about the other 200 or so messages? Surely you, the programmer, aren't

going to write code for all the 200 messages. Fortunately, Windows(tm) provides

the DefWindowProc(..) function which handles all the messages. For the

purposes of displaying a simple window, your MainWndProc could very well have

consisted of

LRESULT CALLBACK MainWndProc(HWND hwnd,UINT msg,WPARAM

wParam,LPARAM lParam)

{

 return DefWindowProc(hwnd,msg,wParam,lParam);

}

What this means is that every time you want to do something about a message,

add the case switch for the message and write the code which does something

about it. All messages that you don't want to handle should be passed to the

DefWindowProc(). This is what we have done in our code.

 ...

71 default:

72 // Call the default window handler

73 return DefWindowProc(hwnd,msg,wParam,lParam);

 ...

Adding Functionality

Lets pop up a MessageBox which will display the co-ordinates of the point where

the left mouse button was pressed. To do this you will have to handle the

WM_LBUTTONDOWN message.

Add this code at line 70

 ...

 11

68 PostQuitMessage(0);

69 break;

70 case WM_LBUTTONDOWN:

71 pt.x = LOWORD(lParam);

72 pt.y = HIWORD(lParam);

73 wsprintf(str,"Co-ordinates are\nX=%i and Y=%i",pt.x,pt.y);

74 MessageBox(hwnd, str, "Left Button Clicked", MB_OK);

75 break;

76 default:

 ...

Press F9. This is what you should see when you click anywhere inside the

window.

Exercise

Try this exercise. Pop up a message every time a key is pressed on the

keyboard.

Hint: Handle the WM_CHAR message. Remember to refer to your sdk docs.

If you can manage that, give yourself a pat on the back. You now understand the

basics of event-driven programming - the mechanism which Windows(tm) uses

to communicate with your application. You have crossed one of the more difficult

hurdles in learning windows programming.

 12

Don't worry if you could not do the exercise or if things are still a bit hazy. These

concepts will be used in every single lesson after this and it will soon become

second nature to you.

Previous | Up | Next

Last Updated: February 12, 2003

