
 
  

 
 
 

Module 
6 

 
Knowledge 

Representation and 
Logic – 

 (First Order Logic)  
 
 

Version 1 CSE IIT, Kharagpur 
 



6.1 Instructional Objective 
• Students should understand the advantages of first order logic as a knowledge 

representation language 
• Students should be able to convert natural language statement to FOL statements 
• The student should be familiar with the following concepts of first order logic 

o syntax   
o interpretation 
o semantics 
o semantics of quantifiers  
o entailment  
o unification 
o Skolemization 

• Students should be familiar with different inference rules in FOL 
• Students should understand soundness and completeness properties of inference 

mechanisms and the notions of decidability 
• Students should learn in details first order resolution techniques 
• The use of search in first order resolution should be discussed, including some search 

heuristics 
 
At the end of this lesson the student should be able to do the following: 

• Represent a natural language description as statements in first order logic 
• Applying inference rules 
• Implement automated theorem provers using resolution mechanism 
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6.2 First Order Logic 
6.2.1 Syntax 
Let us first introduce the symbols, or alphabet, being used. Beware that there are all sorts 
of slightly different ways to define FOL.  
 
6.2.1.1 Alphabet 

• Logical Symbols: These are symbols that have a standard meaning, like: AND, 
OR, NOT, ALL, EXISTS, IMPLIES, IFF, FALSE, =.  

• Non-Logical Symbols: divided in:  
o Constants:  

 Predicates: 1-ary, 2-ary, .., n-ary. These are usually just identifiers.  
 Functions: 0-ary, 1-ary, 2-ary, .., n-ary. These are usually just 

identifiers. 0-ary functions are also called individual constants.  

Where predicates return true or false, functions can return any value.  

o Variables: Usually an identifier.  

One needs to be able to distinguish the identifiers used for predicates, functions, 
and variables by using some appropriate convention, for example, capitals for 
function and predicate symbols and lower cases for variables.  

6.2.1.2 Terms 
A Term is either an individual constant (a 0-ary function), or a variable, or an n-ary 
function applied to n terms: F(t1 t2 ..tn) 
[We will use both the notation F(t1 t2 ..tn) and the notation (F t1 t2 .. tn)]  

 
6.2.1.3 Atomic Formulae 
An Atomic Formula is either FALSE or an n-ary predicate applied to n terms: P(t1 t2 .. 
tn). In the case that "=" is a logical symbol in the language, (t1 = t2), where t1 and t2 are 
terms, is an atomic formula.  
 
6.2.1.4 Literals 
A Literal is either an atomic formula (a Positive Literal), or the negation of an atomic 
formula (a Negative Literal). A Ground Literal is a variable-free literal.  
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6.2.1.5 Clauses 
A Clause is a disjunction of literals. A Ground Clause is a variable-free clause. A Horn 
Clause is a clause with at most one positive literal. A Definite Clause is a Horn Clause 
with exactly one positive Literal. 
 
Notice that implications are equivalent to Horn or Definite clauses:  

(A IMPLIES B) is equivalent to ( (NOT A) OR B)  
(A AND B IMPLIES FALSE) is equivalent to ((NOT A) OR (NOT B)).  

 
6.2.1.6 Formulae 
A Formula is either:  

• an atomic formula, or  
• a Negation, i.e. the NOT of a formula, or  
• a Conjunctive Formula, i.e. the AND of formulae, or  
• a Disjunctive Formula, i.e. the OR of formulae, or  
• an Implication, that is a formula of the form (formula1 IMPLIES formula2), or  
• an Equivalence, that is a formula of the form (formula1 IFF formula2), or  
• a Universally Quantified Formula, that is a formula of the form (ALL variable 

formula). We say that occurrences of variable are bound in formula [we should 
be more precise]. Or  

• a Existentially Quantified Formula, that is a formula of the form (EXISTS 
variable formula). We say that occurrences of variable are bound in formula [we 
should be more precise].  

An occurrence of a variable in a formula that is not bound, is said to be free. 
A formula where all occurrences of variables are bound is called a closed formula, one 
where all variables are free is called an open formula.  

A formula that is the disjunction of clauses is said to be in Clausal Form. We shall see 
that there is a sense in which every formula is equivalent to a clausal form.  

Often it is convenient to refer to terms and formulae with a single name. Form or 
Expression is used to this end.  

6.2.2 Substitutions 

• Given a term s, the result [substitution instance] of substituting a term t in s 
for a variable x, s[t/x], is:  

o t, if s is the variable x  
o y, if s is the variable y different from x  
o F(s1[t/x] s2[t/x] .. sn[t/x]), if s is F(s1 s2 .. sn).  
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• Given a formula A, the result (substitution instance) of substituting a term t in 
A for a variable x, A[t/x], is:  

o FALSE, if A is FALSE,  
o P(t1[t/x] t2[t/x] .. tn[t/x]), if A is P(t1 t2 .. tn),  
o (B[t/x] AND C[t/x]) if A is (B AND C), and similarly for the other 

connectives,  
o (ALL x B) if A is (ALL x B), (similarly for EXISTS),  
o (ALL y B[t/x]), if A is (ALL y B) and y is different from x (similarly for 

EXISTS).  

The substitution [t/x] can be seen as a map from terms to terms and from formulae to 
formulae. We can define similarly [t1/x1 t2/x2 .. tn/xn], where t1 t2 .. tn are terms and x1 
x2 .. xn are variables, as a map, the [simultaneous] substitution of x1 by t1, x2 by t2, .., 
of xn by tn. [If all the terms t1 .. tn are variables, the substitution is called an alphabetic 
variant, and if they are ground terms, it is called a ground substitution.] Note that a 
simultaneous substitution is not the same as a sequential substitution. 

  
6.2.3 Unification 

• Given two substitutions S = [t1/x1 .. tn/xn] and V = [u1/y1 .. um/ym], the 
composition of S and V, S . V, is the substitution obtained by:  

o Applying V to t1 .. tn [the operation on substitutions with just this 
property is called concatenation], and  

o adding any pair uj/yj such that yj is not in {x1 .. xn}.  

For example: [G(x y)/z].[A/x B/y C/w D/z] is [G(A B)/z A/x B/y C/w].  

Composition is an operation that is associative and non commutative  

• A set of forms f1 .. fn is unifiable iff there is a substitution S such that f1.S = f2.S 
= .. = fn.S. We then say that S is a unifier of the set. 
For example {P(x F(y) B) P(x F(B) B)} is unified by [A/x B/y] and also unified 
by [B/y].  
 

• A Most General Unifier (MGU) of a set of forms f1 .. fn is a substitution S that 
unifies this set and such that for any other substitution T that unifies the set there 
is a substitution V such that S.V = T. The result of applying the MGU to the 
forms is called a Most General Instance (MGI). Here are some examples:  

•  

FORMULAE  MGU  MGI 
-------------------------------------------------------------- 
(P x), (P A)  [A/x]  (P A) 
-------------------------------------------------------------- 
(P (F x) y (G y)), [x/y x/z] (P (F x) x (G x)) 
(P (F x) z (G x)) 
-------------------------------------------------------------- 
(F x (G y)),   [(G u)/x y/z] (F (G u) (G y)) 

Version 1 CSE IIT, Kharagpur 
 



(F (G u) (G z)) 
-------------------------------------------------------------- 
(F x (G y)),   Not Unifiable 
(F (G u) (H z)) 
-------------------------------------------------------------- 
(F x (G x) x),  Not Unifiable 
(F (G u) (G (G z)) z) 
-------------------------------------------------------------- 

This last example is interesting: we first find that (G u) should replace x, then that (G z) 
should replace x; finally that x and z are equivalent. So we need x->(G z) and x->z to be 
both true. This would be possible only if z and (G z) were equivalent. That cannot happen 
for a finite term. To recognize cases such as this that do not allow unification [we cannot 
replace z by (G z) since z occurs in (G z)], we need what is called an Occur Test . Most 
Prolog implementation use Unification extensively but do not do the occur test for 
efficiency reasons.  
 
The determination of Most General Unifier is done by the Unification Algorithm. Here 
is the pseudo code for it: 
 
FUNCTION Unify WITH PARAMETERS form1, form2, and assign RETURNS MGU,  
where form1 and form2 are the forms that we want to unify, and assign 
is initially nil. 
 
1. Use the Find-Difference function described below to determine the 

first elements where form1 and form2 differ and one of the elements 
is a variable. Call difference-set the value returned by Find-
Difference. This value will be either the atom Fail, if the two 
forms cannot be unified; or null, if the two forms are identical; or 
a pair of the form (Variable Expression). 

 
2. If Find-Difference returned the atom Fail, Unify also returns Fail 

and we cannot unify the two forms. 
 
3. If Find-Difference returned nil, then Unify will return assign as 

MGU. 
 
4. Otherwise, we replace each occurrence of Variable by Expression in 

form1 and form2; we compose the given assignment assign with the 
assignment that maps Variable into Expression, and we repeat the 
process for the new form1, form2, and assign. 

 
 
FUNCTION Find-Difference WITH PARAMETERS form1 and form2 RETURNS pair, 
where form1 and form2 are e-expressions. 
 
1. If form1 and form2 are the same variable, return nil. 
 
2. Otherwise, if either form1 or form2 is a variable, and it does not 

appear anywhere in the other form, then return the pair (Variable 
Other-Form), otherwise return Fail. 

 
3. Otherwise, if either form1 or form2 is an atom then if they are the 

same atom then return nil otherwise return Fail. 
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4. Otherwise both form1 and form2 are lists. 
Apply the Find-Difference function to corresponding elements of the 
two lists until either a call returns a non-null value or the two 
lists are simultaneously exhausted, or some elements are left over 
in one list. 
 
In the first case, that non-null value is returned; in the second,  
nil is returned; in the third, Fail is returned 

 
6.2.4 Semantics 
Before we can continue in the "syntactic" domain with concepts like Inference Rules and 
Proofs, we need to clarify the Semantics, or meaning, of First Order Logic.  

An L-Structure or Conceptualization for a language L is a structure M= (U,I), where:  

• U is a non-empty set, called the Domain, or Carrier, or Universe of Discourse 
of M, and  

• I is an Interpretation that associates to each n-ary function symbol F of L a map  

I(F): UxU..xU -> U 

and to each n-ary predicate symbol P of L a subset of UxU..xU.  

The set of functions (predicates) so introduced form the Functional Basis (Relational 
Basis) of the conceptualization.  

Given a language L and a conceptualization (U,I), an Assignment is a map from the 
variables of L to U.  An X-Variant of an assignment s is an assignment that is identical 
to s everywhere except at x where it differs.  

Given a conceptualization M=(U,I) and an assignment s it is easy to extend s to map each 
term t of L to an individual s(t) in U by using induction on the structure of the term. 

Then  

• M satisfies a formula A under s iff  
o A is atomic, say P(t1 .. tn), and (s(t1) ..s(tn)) is in I(P).  
o A is (NOT B) and M does not satisfy B under s.  
o A is (B OR C) and M satisfies B under s, or M satisfies C under s. 

[Similarly for all other connectives.]  
o A is (ALL x B) and M satisfies B under all x-variants of s.  
o A is (EXISTS x B) and M satisfies B under some x-variants of s.  

• Formula A is satisfiable in M iff there is an assignment s such that M satisfies A 
under s.  

• Formula A is satisfiable iff there is an L-structure M such that A is satisfiable in 
M.  
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• Formula A is valid or logically true in M iff M satisfies A under any s. We then 
say that M is a model of A.  

• Formula A is Valid or Logically True iff for any L-structure M and any 
assignment s, M satisfies A under s.  

Some of these definitions can be made relative to a set of formulae GAMMA:  

• Formula A is a Logical Consequence of GAMMA in M iff M satisfies A under 
any s that also satisfies all the formulae in GAMMA.  

• Formula A is a Logical Consequence of GAMMA iff for any L-structure M, A 
is a logical consequence of GAMMA in M. At times instead of "A is a logical 
consequence of GAMMA" we say "GAMMA entails A".  

We say that formulae A and B are (logically) equivalent iff A is a logical consequence of 
{B} and B is a logical consequence of {A}.  
 
EXAMPLE 1: A Block World 

Here we look at a problem and see how to represent it in a language. We consider a 
simple world of blocks as described by the following figures:  
 
 
     +--+ 
     |a | 
     +--+ 
     |e | 
 +--+    +--+ 
 |a |    |c | 
 +--+ +--+   +--+ 
 |b | |d | ======>  |d | 
 +--+ +--+   +--+ 
 |c | |e |   |b | 
      ---------------  -------------------- 
 
 
We see two possible states of the world. On the left is the current state, on the right a 
desired new state. A robot is available to do the transformation. To describe these worlds 
we can use a structure with domain U = {a b c d e}, and with predicates {ON, ABOVE, 
CLEAR, TABLE} with the following meaning:  

• ON: (ON x y) iff x is immediately above y. 
The interpretation of ON in the left world is {(a b) (b c) (d e)}, and in the right 
world is {(a e) (e c) (c d) (d b)}.  

• ABOVE: (ABOVE x y) iff x is above y. 
The interpretation of ABOVE [in the left world] is {(a b) (b c) (a c) (d e)} and in 
the right world is {(a e) (a c) (a d) (a b) (e c) (e d) (e b) (c d) (c b) (d b)}  

• CLEAR: (CLEAR x) iff x does not have anything above it. 
The interpretation of CLEAR [in the left world] is {a d} and in the right world is 
{a}  

Version 1 CSE IIT, Kharagpur 
 



• TABLE: (TABLE x) iff x rests directly on the table. 
The interpretation of TABLE [in the left world] is {c e} and in the right world id 
{b}.  

Examples of formulae true in the block world [both in the left and in the right state] are 
[these formulae are known as Non-Logical Axioms]:  

• (ON x y) IMPLIES (ABOVE x y)  
• ((ON x y) AND (ABOVE y z)) IMPLIES (ABOVE x z)  
• (ABOVE x y) IMPLIES (NOT (ABOVE y x))  
• (CLEAR x) IFF (NOT (EXISTS y (ON y x)))  
• (TABLE x) IFF (NOT (EXISTS y (ON x y)))  

Note that there are things that we cannot say about the block world with the current 
functional and predicate basis unless we use equality. Namely, we cannot say as we 
would like that a block can be ON at most one other block. For that we need to say that if 
x is ON y and x is ON z then y is z. That is, we need to use a logic with equality. 
 
Not all formulae that are true on the left world are true on the right world and viceversa. 
For example, a formula true in the left world but not in the right world is (ON a b). 
Assertions about the left and right world can be in contradiction. For example (ABOVE b 
c) is true on left, (ABOVE c b) is true on right and together they contradict the non-
logical axioms. This means that the theory that we have developed for talking about the 
block world can talk of only one world at a time. To talk about two worlds 
simultaneously we would need something like the Situation Calculus that we will study 
later. 
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