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Artificial Intelligence

First-order logic 

Conjunctive normal form 

Resolution theorem-proving

Limitations of Propositional Logic

• Many kinds of inference cannot be formalized in 
propositional logic.  For example, most useful inferences 
involve applying a general rule to a specific case. But 
general-to-specific inferences like the following cannot 
be formalized in propositional logic.
– All men are mortal
– Socrates is a man
– Therefore, Socrates is mortal

• This inference cannot be formalized in propositional 
logic because it refers to individual men, such as 
Socrates, and make generalizations about all men.

First-Order Logic (FOL)

• Propositional logic has only sentences, which represent 
facts.  

• First-order logic extends propositional logic in two 
directions
– It provides an inner structure for sentences. They are 

viewed as expressing relations between objects or 
individuals.

– It provides a means to express, and reason with, 
generalizations.  It makes it possible to say that a 
certain property holds of all objects, of some objects, 
or of no object.

Terms
• First-order logic has terms that represent objects or 

individuals.  Terms are built using constant, variable, 
and function symbols.
– Constants (designate specific object): A, B, John, 

Red, etc.
– Variables (designate unspecified object):  x, y, z, etc.
– Functions (designate a specific object related in a 

certain way to another object, or objects): 
FatherOf, ColorOf, etc.

• Examples of terms: 
– ColorOf(CarOf(Bill)),  

CostOf(TextbookOf(CMPSCI383)), etc.
• Ground terms are terms that include no variables.

Predicates
• Predicates have a value of true or false

• A predicate can take arguments, which are terms

• A predicate with one argument expresses a property of 
an object
– Student(Bob)

• A predicate with two or more arguments expresses a 
relation between objects
– likes(Bob, Mary)

– likes(Bob, school-of (Bob))

• A predicate with no arguments is a simple proposition, 
as in propositional logic

Universal Quantifier

∀x P(x) means “ for all x, P of x is true”
Example:   ∀x Happy(x)

If the universe of discourse is people, then this 
means that everyone is happy.

Other examples:

∀x ∀y Knows(x,y) => Knows(y,x)

∀x ∀y Knows(x,y) ^ Knows(y,x)

∀x ∀y Knows(x,y) => ¬ Likes(y,x)
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Existential Quantifier

∃x P(x) means “ there exists at least one x for 
which P of x is true”

Example: ∃x Happy(x)

If the universe of discourse is people, then this 
means there is at least one happy person.

Other examples:

∀x ∃y Knows(x,y) 

∃x ∃y Knows(x,y) ^ Knows(y,x)

∀x ∃y Knows(x,y) => ¬ Likes(y,x)

Relationship between Universal 
and Existential Quantifiers

∀x ¬ P(x)                <=> ¬∃x P(x)

¬∀x  P(x)                <=> ∃x ¬P(x)

∀x P(x)                   <=> ¬∃x ¬ P(x)

∃x P(x)                   <=> ¬∀x ¬ P(x)

Examples:
¬∃y Happy(y)          <=>   ∀y ¬ Happy(y) 
∃y ¬Happy(y)          <=>   ¬ ∀y Happy(y)

∀x ¬ Likes(x,Jane)  <=>  ¬∃x Likes(x,Jane)

∀x Likes(x,Jane)     <=>  ¬∃x ¬Likes(x,Jane)

Scope of Quantifiers

• The scope of a quantifier extends 
throughout the expression unless the same 
variable is re-quantified.

• Examples:
∀x ∃y¬ Likes(x,y) ∧ ∃y Married(x,y)
∀x ∃y¬ Likes(x,y)∧ ∃z Married(x,z)
∀x ∃y ∃z ¬ Likes(x,y) ∧ Married(x,z)
∀x ∃y¬ Likes(x,y) ∧ Married(x,y)

Order matters: Some examples

� ∀x ∃y Likes(x,y) 
� ∃y ∀x Likes(x,y)
� ∀x ∃y Married(x,y)
� ∃y ∀x Married(x,y)
� ¬∀x ∃y Married(x,y)
� ¬∃y ∀x Married(x,y)

Translate from English to FOL
• All people like dogs.

• Some people like cats.

• Some dogs do not like any cats.

• People who like cats are nice but are not happy.

• Cats and dogs are both types of animals.

• My cat named Fred likes a dog named Dolly but 
does not like a dog named Max.

• Happy people are not sad.

Translate from English to FOL

• All CS students are smart.

• Some CS students study music.

• Not all CS students study music.

• Everybody has a mother.
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Translate from English to FOL

• You can fool some of the people all of the time.

• You can’ t fool all of the people all of the time.

• There is one and only one Pope.

The Semantics of FOL

• An interpretation is a set of objects and a 
mapping from each constant, functional symbol 
and predicate to an appropriate object, function 
and relation in the domain.

• A sentence can be valid, satisfiable, or 
unsatisfiable, just as in propositional logic.

Inference in First-Order Logic

• Godel (1930) proved that FOL is complete, 
which means that a proof can be found for any 
valid sentence

• However, it was not until 1965 that Robinson 
developed the first algorithm for finding proofs 
in FOL, called resolution refutation

• (Truth tables don’ t work in FOL because 
sentences with variables can have an infinite 
number of possible interpretations.)

Resolution

• Assumes normal form

• Using conjunctive normal form

From (A∨B) ∧(¬A∨C) infer (A∨C)

• Using implicative normal form

From (¬A � B)∧(B � C) infer (¬A � C)

Resolution Refutation
To prove that a sentence p can be derived from a set of 

sentences KB:

– Convert ¬p and the sentences in KB to CNF.

– Repeat until the empty clause results (a contradiction) 
or no clauses can be resolved

• Find two clauses to which the resolution rule 
applies, but has not previously been applied. 

• Apply the resolution rule to create a new clause. 

– If terminate with empty clause, p is proved. 
Otherwise, p cannot be proved.

Resolution in FOL
• To generalize resolution refutation from propositional 

logic to FOL, we have to answer two questions:
– How do we convert a sentence to normal form (for 

example, CNF) when it contains quantifiers?
– How do we detect that two literals contradict each 

other (and so can be resolved) when they contain 
variables?

• The answer to the 2nd question involves the concept of 
“unification,”  discovered by Robinson.

• Conversion to normal form and unificationare the two 
complicated aspects of resolution theorem-proving in 
FOL, and so we must discuss them in detail
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Normal Form
• It is easier for a computer to perform logical inference 

if we convert all sentences into a “normal form.”   Any 
sentence of first-order logic can be transformed into an 
equivalent sentence in either of these normal forms.

• In conjunctive normal form (CNF), every sentence is 
expressed as a conjunction of clauses (where a clause is 
a disjunction of literals)
(P(x)∨R(x,y)) ∧ (¬S(y)∨R(y,z)) ∧ T(y)

• In implicative normal form, every sentence is 
expressed as an implication with a conjunction of atoms 
on the left and a disjunction of atoms on the right
P(x) ∧ Q(x,y) � S(y) ∨ T(x,y)

Converting to CNF
1) Eliminate the ⇔ connective using the equivalence 

between P⇔Q and (P� Q)∧(Q� P) 
2) Eliminate the � connective using the equivalence 

between P� Q and ¬P ∨ Q
3) Move negation symbols inward, using the following 

equivalences:
• ¬(P∨Q) becomes ¬P∧¬Q
• ¬(P∧Q) becomes ¬P∨¬Q
• ¬∀xP becomes ∃x¬P
• ¬∃xP becomes ∀x¬P
• ¬ ¬ P becomes P

Converting to CNF (continued)
4) Standardize variable names so that each 

quantifier has its own unique variable name. 
∀xP ∨ ∃yQ becomes  ∀x∃y P∨Q

5) Move all quantifiers to the left of the sentence 
(preserving their order). 

∀xP ∨ ∃yQ becomes  ∀x∃y P∨Q

6) Use skolemization to remove existential 
quantifiers (see next slide)

7) Drop universal quantifier symbols (since we now 
assume all variables are universally quantified)

Converting to CNF (continued)

8) Use distributive law to convert to CNF
(P∧Q)∨R becomes (P∨R)∧(Q∨R)

9) Flatten nested conjunctions and disjunctions
(P∨Q) ∨R becomes (P ∨Q ∨R)

Skolemization
• Method for converting a sentence with existential 

quantifiers into a sentence without existential quantifiers 
such that the first sentence is satisfiable if and only if the 
second is.

• To eliminate an existential quantifier, replace each 
occurrence of its variable by a Skolem function whose 
arguments are the variables of universal quantifiers whose 
scope includes the scope of the existential quantifier being 
eliminated.

• If the existential quantifier being eliminated is not within 
the scope of any universal quantifiers, the Skolem
function has no arguments, that is, it is a constant.

Skolemization: Example

∀x∃y (Person(x) ∧ Person(y)) � Loves(x,y)

is converted to

∀x (Person(x) ∧ Person(f(x)) � Loves(x,f(x))

where f(x) specifies the person that x loves
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Skolemization: Another Example
• The sentence “Everyone has a brain”  is represented as

∀x Person(x) � ∃y Brain(y) ∧ Has(x,y)

• If we simply substitute the constant B for the 
existentially quantified variable y, we get a sentence 
that says “Everyone has the same brain,”  not what we 
want to say!

∀x Person(x) � Brain(B) ∧ Has(x,B)

• Using the Skolem function B(x) to represent a function 
that denotes the object that is x’s brain, the correct 
skolemization of our original sentence is

∀x Person(x) � Brain(B(x)) ∧ Has(x,B(x))

Skolemization: More examples

∃xP(x) becomes P(A)

∀x∀y∃zP(x,y,z) becomes ∀x∀yP(x,y,F(x,y))

∀x∃yPred(x,y) becomes ∀xPred(x,Succ(x))

Practice

Convert the following sentences to CNF

∀x P(x) �  ∀y∃x Q(y,x)

Conversion to Implicative Normal Form

• To convert to implicative normal form, first 
convert to CNF, then perform one 
additional step.

• From each conjunct, build an equivalent 
implication by putting each negative literal 
on the left hand side and each positive 
literal on the right

• (¬A∨¬B∨C∨D) becomes (A∧B) � (C∨D)

Unification
• In propositional logic, it is easy to see that two literals 

(such as p and ¬p) contradict each other.
• In FOL, this matching process is more complicated 

because arguments of predicates must be considered. 
For example, man(John) and ¬man(John) is a 
contradiction, while man(John) and man(Spot) is not.

• To detect contradictions in FOL, we need a matching 
procedure that compares two literals and discovers 
whether there exists a set of substitutions that makes 
them identical. This procedure is called unification.

• Notation:   x/car means car is substituted for x

Unification cont.

• The unification algorithm takes two atomic 
sentences (literals), such as Knows(John, x) 
and Knows(John, Paul), and returns a 
substitution that makes them look the same, 
such as { x/Paul}

• If there is no such substitition, the 
unification fails.
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Most General Unifier

• There may be more than one substitution 
that unifies two clauses. In fact, there may 
be infinitely many

• The unification algorithm returns the “most 
general unifier” , that is, the substitution that 
makes the least commitment about the 
bindings of variables

Example
Rule:

Knows(John, x) => Hates(John, x)

Knowledge Base:

Knows (John, Jane)

Knows(y,Leonid)

Knows(y, Mother-of(y))

Knows(x, Elizabeth)

Unify(Knows(John,x), Knows(John,Jane)) =

Unify(Knows(John, x), Knows(y, Leonid)) =

Unify(Knows(John,x), Knows(y, Mother(y))) =

Unify(Knows(John,x), Knows(x,Elizabeth)) =

Standardizing Variables Apart
Rule:

Knows(John, x1) => Hates(John, x1)

Knowledge Base:

Knows (John, Jane)

Knows( x2 ,Leonid)

Knows( x3 , Mother-of( x3))

Knows( x4 , Elizabeth)

Unify(Knows(John, x1), Knows (x2,Elizabeth)) =

Resolution Example

Anyone passing his history exams and 
winning the lottery is happy.  But anyone 
who studies or is lucky can pass all his 
exams.  John did not study but John is 
lucky.  Anyone who is lucky wins the 
lottery.  Is John happy?

1. Anyone passing his history exams and winning the 
lottery is happy.

∀x Pass(x, History) ∧ Win(x, Lottery) �  Happy(x)

2.  But anyone who studies or is lucky can pass all his 
exams.  

∀x ∀y Study(x) ∨ Lucky(x) �  Pass(x,y)

3.  John did not study, but John is lucky

¬ Study(John) ∧ Lucky(John)

4.  Anyone who is lucky wins the lottery.

∀x Lucky(x) � Win(x, Lottery)

1st step: Convert to predicate logic

Eliminate implications:

1.  ∀x ¬ (Pass(x, History) ∧ Win(x, Lottery)) ∨ Happy(x)

2.  ∀x ∀y ¬ (Study(x) ∨ Lucky(x) ) ∨ Pass(x,y)

3.  ¬ Study(John) ∧ Lucky(John)

4.  ∀x ¬ Lucky(x) ∨ Win(x, Lottery)

2nd step: Convert to CNF
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Move ¬ inward
1.  ∀x ¬ Pass(x, History) ∨ ¬ Win(x, Lottery)) ∨ Happy(x)
2.  ∀x ∀y (¬ Study(x) ∧ ¬Lucky(x) )∨ Pass(x,y)
3.  ¬ Study(John) ∧ Lucky(John)
4.  ∀x ¬ Lucky(x) ∨ Win(x, Lottery)

Standardize variables:  no action needed

Move quantif iers left: no action needed except drop quantif iers

Skolemize:  no action needed

Convert to CNF Cont.

Distribute ∧ over ∨

1.  ¬ Pass(x, History) ∨ ¬ Win(x, Lottery)) ∨ Happy(x)

2.  (¬ Study(x) ∨ Pass(x,y)) ∧ (  ¬ Lucky(x) ∨ Pass(x,y))

3.  ¬ Study(John) ∧ Lucky(John)

4.  ¬ Lucky(x) ∨ Win(x, Lottery)

Convert to CNF Cont.

Convert to CNF Cont.

Flatten nested conjunctions and disjunctions
no action necessary

State as a set of disjunction of literals

1.  ¬ Pass(x, History) ∨ ¬ Win(x, Lottery) ∨ Happy(x)
2. a.  ¬ Study(x) ∨ Pass(x,y)
2. b. ¬Lucky(x) ∨ Pass(x,y)
3. a. ¬ Study(John)

b. Lucky(John)
4.  ¬ Lucky(x) ∨ Win(x, Lottery)

Convert to CNF Cont.
Standardize variables apart
1.  ¬ Pass(x1, History) ∨ ¬ Win(x1, Lottery) ∨   Happy(x1)
2. a.  ¬ Study(x2) ∨ Pass(x2,y1)
2. b. ¬Lucky(x3) ∨ Pass(x3,y2)
3. a. ¬ Study(John)

b. Lucky(John)
4.  ¬ Lucky(x4) ∨ Win(x4, Lottery)

NOW IN CONJUNCTIVE NORMAL FORM (CNF)

3rd step: Resolution Proof Procedure

• Assert negation of goal
– In this case the goal is to prove 

Happy(John)

– Add the clause
¬ Happy(John)

to the KB

• Resolve clauses together until FALSE is 
derived

Resolution Proof Tree
¬ Happy(John) 1.

{ x/John)

¬ Pass(John, History) ∨ ¬ Win(John, Lottery) 4.

{ x/John}

¬ Pass(John, History) ∨ ¬Lucky(John) 3b.

¬ Pass(John, History) 2b.

{ x/John, y/History}

¬Lucky(John) 3b.

FALSE


