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4.5 Variable and Value Ordering 
A search algorithm for constraint satisfaction requires the order in which variables are to 
be considered to be specified as well as the order in which the values are assigned to the 
variable on backtracking. Choosing the right order of variables (and values) can 
noticeably improve the efficiency of constraint satisfaction.  
 
4.5.1 Variable Ordering 
Experiments and analysis of several researchers have shown that the ordering in which 
variables are chosen for instantiation can have substantial impact on the complexity of 
backtrack search. The ordering may be either  

• a static ordering, in which the order of the variables is specified before the search 
begins, and it is not changed thereafter, or  

• a dynamic ordering, in which the choice of next variable to be considered at any 
point depends on the current state of the search.  

Dynamic ordering is not feasible for all search algorithms, e.g., with simple backtracking 
there is no extra information available during the search that could be used to make a 
different choice of ordering from the initial ordering. However, with forward checking, 
the current state includes the domains of the variables as they have been pruned by the 
current set of instantiations, and so it is possible to base the choice of next variable on 
this information. 

Several heuristics have been developed and analyzed for selecting variable ordering. The 
most common one is based on the "first-fail" principle, which can be explained as 

"To succeed, try first where you are most likely to fail." 

In this method, the variable with the fewest possible remaining alternatives is selected for 
instantiation. Thus the order of variable instantiations is, in general, different in different 
branches of the tree, and is determined dynamically. This method is based on assumption 
that any value is equally likely to participate in a solution, so that the more values there 
are, the more likely it is that one of them will be a successful one. 

The first-fail principle may seem slightly misleading, after all, we do not want to fail. The 
reason is that if the current partial solution does not lead to a complete solution, then the 
sooner we discover this the better. Hence encouraging early failure, if failure is 
inevitable, is beneficial in the long term. On the other end, if the current partial solution 
can be extended to a complete solution, then every remaining variable must be 
instantiated and the one with smallest domain is likely to be the most difficult to find a 
value for (instantiating other variables first may further reduce its domain and lead to a 
failure). Hence the principle could equally well be stated as: 

"Deal with hard cases first: they can only get more difficult if you put them off." 
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This heuristic should reduce the average depth of branches in the search tree by triggering 
early failure. 

Another heuristic, that is applied when all variables have the same number of values, is to 
choose the variable which participates in most constraints (in the absence of more 
specific information on which constraints are likely to be difficult to satisfy, for instance). 
This heuristic follows also the principle of dealing with hard cases first. 

There is also a heuristic for static ordering of variables that is suitable for simple 
backtracking. This heuristic says: choose the variable which has the largest number of 
constraints with the past variables. For instance, during solving graph coloring problem, 
it is reasonable to assign color to the vertex which has common arcs with already colored 
vertices so the conflict is detected as soon as possible. 

4.5.2 Value Ordering 
Once the decision is made to instantiate a variable, it may have several values available. 
Again, the order in which these values are considered can have substantial impact on the 
time to find the first solution. However, if all solutions are required or there are no 
solutions, then the value ordering is indifferent.  

A different value ordering will rearrange the branches emanating from each node of the 
search tree. This is an advantage if it ensures that a branch which leads to a solution is 
searched earlier than branches which lead to death ends. For example, if the CSP has a 
solution, and if a correct value is chosen for each variable, then a solution can be found 
without any backtracking. 

Suppose we have selected a variable to instantiate: how should we choose which value to 
try first? It may be that none of the values will succeed, in that case, every value for the 
current variable will eventually have to be considered, and the order does not matter. On 
the other hand, if we can find a complete solution based on the past instantiations, we 
want to choose a value which is likely to succeed, and unlikely to lead to a conflict. So, 
we apply the "succeed first" principle. 

One possible heuristic is to prefer those values that maximize the number of options 
available. Visibly, the algorithm AC-4 is good for using this heuristic as it counts the 
supporting values. It is possible to count "promise" of each value, that is the product of 
the domain sizes of the future variables after choosing this value (this is an upper bound 
on the number of possible solutions resulting from the assignment). The value with 
highest promise should be chosen. Is also possible to calculate the percentage of values in 
future domains which will no longer be usable. The best choice would be the value with 
lowest cost. 

Another heuristic is to prefer the value (from those available) that leads to an easiest to 
solve CSP. This requires to estimate the difficulty of solving a CSP. One method propose 
to convert a CSP into a tree-structured CSP by deleting a minimum number of arcs and 
then to find all solutions of the resulting CSP (higher the solution count, easier the CSP). 
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For randomly generated problems, and probably in general, the work involved in 
assessing each value is not worth the benefit of choosing a value which will on average 
be more likely to lead to a solution than the default choice. In particular problems, on the 
other hand, there may be information available which allows the values to be ordered 
according to the principle of choosing first those most likely to succeed. 

4.6 Heuristic Search in CSP 
In the last few years, greedy local search strategies became popular, again. These 
algorithms incrementally alter inconsistent value assignments to all the variables. They 
use a "repair" or "hill climbing" metaphor to move towards more and more complete 
solutions. To avoid getting stuck at "local optima" they are equipped with various 
heuristics for randomizing the search. Their stochastic nature generally voids the 
guarantee of "completeness" provided by the systematic search methods. 
 
The local search methodology uses the following terms: 

• state (configuration): one possible assignment of all variables; the number of 
states is equal to the product of domains' sizes  

• evaluation value: the number of constraint violations of the state (sometimes 
weighted)  

• neighbor: the state which is obtained from the current state by changing one 
variable value  

• local-minimum: the state that is not a solution and the evaluation values of all of 
its neighbors are larger than or equal to the evaluation value of this state  

• strict local-minimum: the state that is not a solution and the evaluation values of 
all of its neighbors are larger than the evaluation value of this state  

• non-strict local-minimum: the state that is a local-minimum but not a strict 
local-minimum.  

4.6.1 Hill-Climbing 
Hill-climbing is probably the most known algorithm of local search. The idea of hill-
climbing is:  

1. start at randomly generated state  
2. move to the neighbor with the best evaluation value  
3. if a strict local-minimum is reached then restart at other randomly generated state.  

This procedure repeats till the solution is found. In the algorithm, that we present here, 
the parameter Max_Flips is used to limit the maximal number of moves between restarts 
which helps to leave non-strict local-minimum. 
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Algorithm Hill-Climbing  

 
procedure hill-climbing(Max_Flips) 
  restart: s <- random valuation of variables; 
  for j:=1 to Max_Flips do 
    if eval(s)=0 then return s endif; 
    if s is a strict local minimum then 
        goto restart 
    else 
      s <- neighborhood with smallest evaluation value 
    endif 
  endfor 
  goto restart 
end hill-climbing 

Note, that the hill-climbing algorithm has to explore all neighbors of the current state 
before choosing the move. This can take a lot of time. 

4.6.2 Min-Conflicts 
To avoid exploring all neighbors of the current state some heuristics were proposed to 
find a next move. Min-conflicts heuristics chooses randomly any conflicting variable, i.e., 
the variable that is involved in any unsatisfied constraint, and then picks a value which 
minimizes the number of violated constraints (break ties randomly). If no such value 
exists, it picks randomly one value that does not increase the number of violated 
constraints (the current value of the variable is picked only if all the other values increase 
the number of violated constraints).  
 

Algorithm Min-Conflicts  

procedure MC(Max_Moves) 
  s <- random valuation of variables; 
  nb_moves <- 0; 
  while eval(s)>0 & nb_moves<Max_Moves do 
    choose randomly a variable V in conflict; 
    choose a value v' that minimizes the number of conflicts for V;
    if v' # current value of V then 
      assign v' to V; 
      nb_moves <- nb_moves+1; 
    endif 
  endwhile 
  return s 
end MC 

Note, that the pure min-conflicts algorithm presented above is not able to leave local-
minimum. In addition, if the algorithm achieves a strict local-minimum it does not 
perform any move at all and, consequently, it does not terminate. 
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4.6.3 GSAT 
GSAT is a greedy local search procedure for satisfying logic formulas in a conjunctive 
normal form (CNF). Such problems are called SAT or k-SAT (k is a number of literals in 
each clause of the formula) and are known to be NP-c (each NP-hard problem can be 
transformed to NP-complex problem).  

The procedure starts with an arbitrary instantiation of the problem variables and offers to 
reach the highest satisfaction degree by succession of small transformations called repairs 
or flips (flipping a variable is a changing its value). 

Algorithm GSAT  

procedure GSAT(A,Max_Tries,Max_Flips) 
  A: is a CNF formula 
  for i:=1 to Max_Tries do 
    S <- instantiation of variables 
    for j:=1 to Max_Iter do 
      if A satisfiable by S then 
        return S 
      endif 
      V <- the variable whose flip yield the most important raise in the 
number of satisfied clauses; 
      S <- S with V flipped; 
    endfor 
  endfor 
  return the best instantiation found 
end GSAT 
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Questions 
1. Consider a variant of the crossword puzzle problem. In this variant, we assume that we 
have a set of words W1, W2,...Wn and a crossword puzzle grid. Our goal is to fill the 
crossword grid with the words such that letters of intersecting words match. An example 
of an uncompleted puzzle and a completed puzzle appear below. 
 

 
 

 
 

Provide a constraint satisfaction problem formulation for this variant of the crossword 
puzzle problem.  

a. Specify the variables to which values are to be assigned. 
b. Specify the domains from which the variables take their values. 
c. Define the constraints that must hold between variables. Please provide pseudo-

code defining the constraints explicitly. 
d. Give a simple example of a "fill-in" (crossword) puzzle of the type above that 

demonstrates the limitations of arc-consistency type constraint propagation for 
solving constraint satisfaction problems. 
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e. Explain why constraint satisfaction procedures based on backtracking search are 
not subject to this problem. 

f. Briefly describe the use of the iterative refinement, min-conflict strategy to solve 
the crossword puzzle problem. 

g. Demonstrate the application of your procedure on a simple 4 word example 
puzzle. 

 
2.   Consider the following classroom scheduling problem: There are 4 classes, C1, C2, 

C3, and C4, and 3 class rooms, R1, R2, and R3. The following table shows the class 
schedule: 

 

 

 
 
In addition, there are the following restrictions: 
• Each class must use one of the 3 rooms, R1, R2, R3. 

• R3 is too small for C3. 

• R2 and R3 are too small for C4. 
One way of formulating this problem as a constraint satisfaction problem is to let each 
class, C1, …, C4, be a variable, and each room, R1, R2, R3, be the possible values for 
these variables. 
 
(a) Show the initial possible values for each variable, C1, …, C4, given the restrictions 
above. 
 
(b) Express formally all the constraints in this problem. 
 
(c) Consider each pair of variables appearing in the same constraint in (b), please point 
out which pairs are arc-consistent for the initial values provided in (a). For those pairs 
that are not arc-consistent, please provide the necessary operations so that they become 
arc-consistent. 
 
Solution 
1. A. Variables. 

We use rows or columns of boxes as variables. In this case we have four variables 
H1,H2,V1,V2  (we use H for horizontal and V for vertical) 

 
1. B. Domains 

All the variables can take values out of the same domain D. In our case we define D 
= {THE, UNIVERSITY, OF, CHICAGO} 
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1. C. Constraints 
We define two kinds of constraints. 
Length constraints: 
 length(H1) == 10 
 length(H2) == 2 
 length(V1) == 3 
 length(V2) == 7 
Cross constraints: 
 H1(5) == V1(3) 
 H1(8) == V2(3) 
 H2(1) == V2(7) 

 
1.D.  Arc consistency problems 

There are two kinds of problems, when there are no legal assignments or there are 
more than one legal assignment. 

 
Example of more than one legal assignment. 
Assume three variables V1,H1,H2 taking values out of the domain D = {bit, its, hit, 
sit, ion, one} 
      V1 
H1 | | | | 
     | | 
H2 | | | | 
 
after applying the arc consistency algorithm (page 146) the domains for each 
variable are equal to 
D(H1) = {bit, hit, sit} 
D(V1) = {ion} 
D(H2) = {one} 
 
There is more than one legal assignment for the variable H1 

 
Example of no legal assignment. 
In the previous example change the domain from D to E = {bit, its, hit, sit, ion }  
 
1.E. Procedures based on backtracking do not have problems with multiple legal 

assignments because they pick the first one that satisfies the constraints without 
looking for more options. When there are no legal assignments, they search the 
whole space, then return a failure value 

 
1. F. 

(0). Start a counter of steps count := 0 
(1). Assign to each variable a random word taken from its respective domain. 
(2). Count the number of conflicts each assignment produced (number of 

constraints unsatisfied) 
(3). Pick the variable with the highest number of conflicts and change its value until 

its number of conflicts is reduced 
(4). Increase count by one 
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(5). If count is less than a predetermined maximum number of steps, repeat from 
step (2) 

 
Note: Explain why it is necessary to have a maximum number of steps. Is this an 
optimal method? 

 
1. G. Now that you have the algorithm, try it at home! 
 
2.a.  C1: { R1, R2, R3 } C2: { R1, R2, R3 } C3: { R1, R2 } C4: { R1 } 
 
2.b    C1 != C2, C1 != C3, C2 != C3, C2 != C4, C3 != C4 

We may add C3 != R3, C4 != R2, C4 != R3 even though they are contained in (a). 
 
2.c.  All the five pairs of variables in the five binary constraints in (b) are not arc 

consistent. To make them consistent, we need to remove R1 from the domain of C3, 
R1, R2 from the domain of C2 and R2, R3 from the domain of C1. 
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