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4.1 Instructional Objective 
• The students should understand the formulation of constraint satisfaction problems 
• Given a problem description, the student should be able to formulate it in terms of a 

constraint satisfaction problem, in terms of constraint graphs.  
• Students should be able to solve constraint satisfaction problems using various 

algorithms. 
• The student should be familiar with the following algorithms, and should be able to 

code the algorithms  
o Backtracking   
o Forward checking 
o Constraint propagation 
o Arc consistency and path consistency 
o Variable and value ordering  
o Hill climbing  

The student should be able to understand and analyze the properties of these algorithms 
in terms of  

o time complexity   
o space complexity   
o termination   
o optimality  

• Be able to apply these search techniques to a given problem whose description is 
provided. 

• Students should have knowledge about the relation between CSP and SAT 
 
At the end of this lesson the student should be able to do the following: 

• Formulate a problem description as a CSP 
• Analyze a given problem and identify the most suitable search strategy for the 

problem. 
• Given a problem, apply one of these strategies to find a solution for the problem. 
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4.2 Constraint Satisfaction Problems 
Constraint satisfaction problems or CSPs are mathematical problems where one must 
find states or objects that satisfy a number of constraints or criteria. A constraint is a 
restriction of the feasible solutions in an optimization problem. 
 
Many problems can be stated as constraints satisfaction problems. Here are some 
examples: 
 
Example 1: The n-Queen problem is the problem of putting n chess queens on an n×n 
chessboard such that none of them is able to capture any other using the standard chess 
queen's moves. The colour of the queens is meaningless in this puzzle, and any queen is 
assumed to be able to attack any other. Thus, a solution requires that no two queens share 
the same row, column, or diagonal. 
 
The problem was originally proposed in 1848 by the chess player Max Bazzel, and over 
the years, many mathematicians, including Gauss have worked on this puzzle. In 1874, S. 
Gunther proposed a method of finding solutions by using determinants, and J.W.L. 
Glaisher refined this approach.  
 
The eight queens puzzle has 92 distinct solutions. If solutions that differ only by 
symmetry operations (rotations and reflections) of the board are counted as one, the 
puzzle has 12 unique solutions. The following table gives the number of solutions for n 
queens, both unique and distinct.  

 
 
 
 

n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

unique: 1 0 0 1 2 1 6 12 46 92 341 1,787 9,233 45,752 285,053 

distinct: 1 0 0 2 10 4 40 92 352 724 2,680 14,200 73,712 365,596 2,279,184 

 
Note that the 6 queens puzzle has, interestingly, fewer solutions than the 5 queens puzzle! 

Example 2: A crossword puzzle: We are to complete the puzzle  

      1   2   3   4   5 
    +---+---+---+---+---+ Given the list of words: 
  1 | 1 |   | 2 |   | 3 |  AFT LASER 
    +---+---+---+---+---+  ALE LEE 
  2 | # | # |   | # |   |  EEL LINE 
    +---+---+---+---+---+  HEEL SAILS 
  3 | # | 4 |   | 5 |   |  HIKE SHEET 
    +---+---+---+---+---+  HOSES STEER 
  4 | 6 | # | 7 |   |   |  KEEL TIE 
    +---+---+---+---+---+  KNOT 
  5 | 8 |   |   |   |   | 
    +---+---+---+---+---+  
  6 |   | # | # |   | # |   
    +---+---+---+---+---+        
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The numbers 1,2,3,4,5,6,7,8 in the crossword puzzle correspond to the words that will 
start at those locations. 
 
Example 3: A map coloring problem: We are given a map, i.e. a planar graph, and we 
are told to color it using k colors, so that no two neighboring countries have the same 
color. Example of a four color map is shown below: 
 

 

The four color theorem states that given any plane separated into regions, such as a 
political map of the countries of a state, the regions may be colored using no more than 
four colors in such a way that no two adjacent regions receive the same color. Two 
regions are called adjacent if they share a border segment, not just a point. Each region 
must be contiguous: that is, it may not consist of separate sections like such real countries 
as Angola, Azerbaijan, and the United States.  
 
It is obvious that three colors are inadequate: this applies already to the map with one 
region surrounded by three other regions (even though with an even number of 
surrounding countries three colors are enough) and it is not at all difficult to prove that 
five colors are sufficient to color a map.  
 
The four color theorem was the first major theorem to be proved using a computer, and 
the proof is not accepted by all mathematicians because it would be infeasible for a 
human to verify by hand. Ultimately, one has to have faith in the correctness of the 
compiler and hardware executing the program used for the proof. The lack of 
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mathematical elegance was another factor, and to paraphrase comments of the time, "a 
good mathematical proof is like a poem — this is a telephone directory!" 
 
Example 4: The Boolean satisfiability problem (SAT) is a decision problem considered 
in complexity theory. An instance of the problem is a Boolean expression written using 
only AND, OR, NOT, variables, and parentheses. The question is: given the expression, 
is there some assignment of TRUE and FALSE values to the variables that will make the 
entire expression true?  
 
In mathematics, a formula of propositional logic is said to be satisfiable if truth-values 
can be assigned to its variables in a way that makes the formula true. The class of 
satisfiable propositional formulas is NP-complete. The propositional satisfiability 
problem (SAT), which decides whether or not a given propositional formula is satisfiable, 
is of central importance in various areas of computer science, including theoretical 
computer science, algorithmics, artificial intelligence, hardware design and verification. 
 
The problem can be significantly restricted while still remaining NP-complete. By 
applying De Morgan's laws, we can assume that NOT operators are only applied directly 
to variables, not expressions; we refer to either a variable or its negation as a literal. For 
example, both x1 and not(x2) are literals, the first a positive literal and the second a 
negative literal. If we OR together a group of literals, we get a clause, such as (x1 or 
not(x2)). Finally, let us consider formulas that are a conjunction (AND) of clauses. We 
call this form conjunctive normal form. Determining whether a formula in this form is 
satisfiable is still NP-complete, even if each clause is limited to at most three literals. 
This last problem is called 3CNFSAT, 3SAT, or 3-satisfiability.  
 
On the other hand, if we restrict each clause to at most two literals, the resulting problem, 
2SAT, is in P. The same holds if every clause is a Horn clause; that is, it contains at most 
one positive literal.  
 
Example 5: A cryptarithmetic problem: In the following pattern  
  S E N D 
  M O R E 
       ========= 
       M O N E Y 

we have to replace each letter by a distinct digit so that the resulting sum is correct. 
 
All these examples and other real life problems like time table scheduling, transport 
scheduling, floor planning etc are instances of the same pattern, captured by the 
following definition:  

A Constraint Satisfaction Problem (CSP) is characterized by: 

• a set of variables {x1, x2, .., xn},  
• for each variable xi a domain Di with the possible values for that variable, and  
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• a set of constraints, i.e. relations, that are assumed to hold between the values of 
the variables. [These relations can be given intentionally, i.e. as a formula, or 
extensionally, i.e. as a set, or procedurally, i.e. with an appropriate generating or 
recognising function.] We will only consider constraints involving one or two 
variables.  

The constraint satisfaction problem is to find, for each i from 1 to n, a value in Di for xi 
so that all constraints are satisfied. 

A CSP can easily be stated as a sentence in first order logic, of the form: 

 (exist x1)..(exist xn) (D1(x1) & .. Dn(xn) => C1..Cm) 

 
4.3 Representation of CSP 
A CSP is usually represented as an undirected graph, called Constraint Graph where the 
nodes are the variables and the edges are the binary constraints. Unary constraints can be 
disposed of by just redefining the domains to contain only the values that satisfy all the 
unary constraints. Higher order constraints are represented by hyperarcs.  
 
A constraint can affect any number of variables form 1 to n (n is the number of variables 
in the problem). If all the constraints of a CSP are binary, the variables and constraints 
can be represented in a constraint graph and the constraint satisfaction algorithm can 
exploit the graph search techniques.  

The conversion of arbitrary CSP to an equivalent binary CSP is based on the idea of 
introducing a new variable that encapsulates the set of constrained variables. This newly 
introduced variable, we call it an encapsulated variable, has assigned a domain that is a 
Cartesian product of the domains of individual variables. Note, that if the domains of 
individual variables are finite than the Cartesian product of the domains, and thus the 
resulting domain, is still finite. 

Now, arbitrary n-ary constraint can be converted to equivalent unary constraint that 
constrains the variable which appears as an encapsulation of the original individual 
variables. As we mentioned above, this unary constraint can be immediately satisfied by 
reducing the domain of encapsulated variable. Briefly speaking, n-ary constraint can be 
substituted by an encapsulated variable with the domain corresponding to the constraint. 
 
This is interesting because any constraint of higher arity can be expressed in terms of 
binary constraints. Hence, binary CSPs are representative of all CSPs.  

Example 2 revisited: We introduce a variable to represent each word in the puzzle. So 
we have the variables:  
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 VARIABLE | STARTING CELL | DOMAIN 
 ================================================ 
 1ACROSS  | 1   | {HOSES, LASER, SAILS, SHEET, STEER} 
 4ACROSS  | 4   | {HEEL, HIKE, KEEL, KNOT, LINE} 
 7ACROSS  | 7   | {AFT, ALE, EEL, LEE, TIE} 
 8ACROSS  | 8   | {HOSES, LASER, SAILS, SHEET, STEER} 
 2DOWN  | 2   | {HOSES, LASER, SAILS, SHEET, STEER} 
 3DOWN  | 3   | {HOSES, LASER, SAILS, SHEET, STEER} 
 5DOWN  | 5   | {HEEL, HIKE, KEEL, KNOT, LINE} 
 6DOWN  | 6   | {AFT, ALE, EEL, LEE, TIE} 

The domain of each variable is the list of words that may be the value of that variable. So, 
variable 1ACROSS requires words with five letters, 2DOWN requires words with five 
letters, 3DOWN requires words with four letters, etc. Note that since each domain has 5 
elements and there are 8 variables, the total number of states to consider in a naive 
approach is 58 = 390,625.  

The constraints are all binary constraints:  

 1ACROSS[3] = 2DOWN[1] i.e. the third letter of 1ACROSS must be 
equal to the first letter of 2DOWN 
 1ACROSS[5] = 3DOWN[1] 
 4ACROSS[2] = 2DOWN[3] 
 4ACROSS[3] = 5DOWN[1] 
 4ACROSS[4] = 3DOWN[3] 
 7ACROSS[1] = 2DOWN[4] 
 7ACROSS[2] = 5DOWN[2] 
 7ACROSS[3] = 3DOWN[4] 
 8ACROSS[1] = 6DOWN[2] 
 8ACROSS[3] = 2DOWN[5] 
 8ACROSS[4] = 5DOWN[3] 
 8ACROSS[5] = 3DOWN[5] 

The corresponding graph is:  

1A 2D 
4A 

3D 

7A 5D 
8A 

6D 
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4.4 Solving CSPs 
Next we describe four popular solution methods for CSPs, namely, Generate-and-Test, 
Backtracking, Consistency Driven, and Forward Checking. 
 
4.4.1 Generate and Test 
We generate one by one all possible complete variable assignments and for each we test 
if it satisfies all constraints. The corresponding program structure is very simple, just 
nested loops, one per variable. In the innermost loop we test each constraint. In most 
situation this method is intolerably slow. 
 

4.4.2 Backtracking 
We order the variables in some fashion, trying to place first the variables that are more 
highly constrained or with smaller ranges. This order has a great impact on the efficiency 
of solution algorithms and is examined elsewhere. We start assigning values to variables. 
We check constraint satisfaction at the earliest possible time and extend an assignment if 
the constraints involving the currently bound variables are satisfied. 

Example 2 Revisited: In our crossword puzzle we may order the variables as follows: 
1ACROSS, 2DOWN, 3DOWN, 4ACROSS, 7ACROSS, 5DOWN, 8ACROSS, 6DOWN. 
Then we start the assignments: 

   1ACROSS  <- HOSES 
    2DOWN  <- HOSES     => failure, 1ACROSS[3] not equal to 
2DOWN[1] 
  <- LASER     => failure 
  <- SAILS 
     3DOWN <- HOSES     => failure 
  <- LASER     => failure 
  <- SAILS 
      4ACROSS <- HEEL      => failure 
  <- HIKE      => failure 
  <- KEEL      => failure 
  <- KNOT      => failure 
  <- LINE      => failure, backtrack 
     3DOWN <- SHEET 
      4ACROSS <- HEEL 
       7ACROSS  <- AFT      => failure 
 ................................ 

What we have shown is called Chronological Backtracking, whereby variables are 
unbound in the inverse order to the the order used when they were bound. Dependency 
Directed Backtracking instead recognizes the cause of failure and backtracks to one of 
the causes of failure and skips over the intermediate variables that did not cause the 
failure. 
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The following is an easy way to do dependency directed backtracking. We keep track at 
each variable of the variables that precede it in the backtracking order and to which it is 
connected directly in the constraint graph. Then, when instantiation fails at a variable, 
backtracking goes in order to these variables skipping over all other intermediate 
variables.  

Notice then that we will backtrack at a variable up to as many times as there are 
preceding neighbors. [This number is called the width of the variable.] The time 
complexity of the backtracking algorithm grows when it has to backtrack often. 
Consequently there is a real gain when the variables are ordered so as to minimize their 
largest width. 

4.4.3 Consistency Driven Techniques 
Consistency techniques effectively rule out many inconsistent labeling at a very early 
stage, and thus cut short the search for consistent labeling. These techniques have since 
proved to be effective on a wide variety of hard search problems. The consistency 
techniques are deterministic, as opposed to the search which is non-deterministic. Thus 
the deterministic computation is performed as soon as possible and non-deterministic 
computation during search is used only when there is no more propagation to done. 
Nevertheless, the consistency techniques are rarely used alone to solve constraint 
satisfaction problem completely (but they could).  

In binary CSPs, various consistency techniques for constraint graphs were introduced to 
prune the search space. The consistency-enforcing algorithm makes any partial solution 
of a small subnetwork extensible to some surrounding network. Thus, the potential 
inconsistency is detected as soon as possible. 

4.4.3.1 Node Consistency 
The simplest consistency technique is refered to as node consistency and we mentioned it 
in the section on binarization of constraints. The node representing a variable V in 
constraint graph is node consistent if for every value x in the current domain of V, each 
unary constraint on V is satisfied. 
 
If the domain D of a variable V containts a value "a" that does not satisfy the unary 
constraint on V, then the instantiation of V to "a" will always result in immediate failure. 
Thus, the node inconsistency can be eliminated by simply removing those values from 
the domain D of each variable V that do not satisfy unary constraint on V. 
 
4.4.3.2 Arc Consistency 
If the constraint graph is node consistent then unary constraints can be removed because 
they all are satisfied. As we are working with the binary CSP, there remains to ensure 
consistency of binary constraints. In the constraint graph, binary constraint corresponds 
to arc, therefore this type of consistency is called arc consistency. 
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Arc (Vi,Vj) is arc consistent if for every value x the current domain of Vi there is some 
value y in the domain of Vj such that Vi=x and Vj=y is permitted by the binary constraint 
between Vi and Vj. Note, that the concept of arc-consistency is directional, i.e., if an arc 
(Vi,Vj) is consistent, than it does not automatically mean that (Vj,Vi) is also consistent. 

Clearly, an arc (Vi,Vj) can be made consistent by simply deleting those values from the 
domain of Vi for which there does not exist corresponding value in the domain of Dj such 
that the binary constraint between Vi and Vj is satisfied (note, that deleting of such values 
does not eliminate any solution of the original CSP). 
 
The following algorithm does precisely that. 
  

Algorithm REVISE  

procedure REVISE(Vi,Vj) 
  DELETE <- false; 
  for each X in Di do 
    if there is no such Y in Dj such that (X,Y) is consistent, 
    then 
       delete X from Di; 
       DELETE <- true; 
    endif; 
  endfor; 
  return DELETE; 
end REVISE 

To make every arc of the constraint graph consistent, it is not sufficient to execute 
REVISE for each arc just once. Once REVISE reduces the domain of some variable Vi, 
then each previously revised arc (Vj,Vi) has to be revised again, because some of the 
members of the domain of Vj may no longer be compatible with any remaining members 
of the revised domain of Vi. The following algorithm, known as AC-1, does precisely 
that. 

Algorithm AC-1  

procedure AC-1 
  Q <- {(Vi,Vj) in arcs(G),i#j}; 
  repeat 
    CHANGE <- false; 
    for each (Vi,Vj) in Q do 
      CHANGE <- REVISE(Vi,Vj) or CHANGE; 
    endfor 
  until not(CHANGE) 
end AC-1 

This algorithm is not very efficient because the succesfull revision of even one arc in 
some iteration forces all the arcs to be revised again in the next iteration, even though 
only a small number of them are really affected by this revision. Visibly, the only arcs 
affected by the reduction of the domain of Vk are the arcs (Vi,Vk). Also, if we revise the 
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arc (Vk,Vm) and the domain of Vk is reduced, it is not necessary to re-revise the arc 
(Vm,Vk) because non of the elements deleted from the domain of Vk provided support for 
any value in the current domain of Vm. The following variation of arc consistency 
algorithm, called AC-3, removes this drawback of AC-1 and performs re-revision only 
for those arcs that are possibly affected by a previous revision. 

Algorithm AC-3  

procedure AC-3 
  Q <- {(Vi,Vj) in arcs(G),i#j}; 
  while not Q empty 
    select and delete any arc (Vk,Vm) from Q; 
    if REVISE(Vk,Vm) then 
      Q <- Q union {(Vi,Vk) such that (Vi,Vk) in 
arcs(G),i#k,i#m} 
    endif 
  endwhile 
end AC-3 

When the algorithm AC-3 revises the edge for the second time it re-tests many pairs of 
values which are already known (from the previous iteration) to be consistent or 
inconsistent respectively and which are not affected by the reduction of the domain. As 
this is a source of potential inefficiency, the algorithm AC-4 was introduced to refine 
handling of edges (constraints). The algorithm works with indiviual pairs of values as the 
following example shows. 

Example: 

 

First, the algorithm AC-4 initializes its internal structures which are used to remember 
pairs of consistent (inconsistent) values of incidental variables (nodes) - structure Si,a. 
This initialization also counts "supporting" values from the domain of incindental 
variable - structure counter(i,j),a - and it removes those values which have no support. 
Once the value is removed from the domain, the algorithm adds the pair 
<Variable,Value> to the list Q for re-revision of affected values of corresponding 
variables. 
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Algorithm INITIALIZE  

procedure INITIALIZE 
  Q <- {}; 
  S <- {};   % initialize each element of structure S 
  for each (Vi,Vj) in arcs(G) do   % (Vi,Vj) and (Vj,Vi) are 
same elements 
    for each a in Di do 
      total <- 0; 
      for each b in Dj do 
        if (a,b) is consistent according to the constraint 
(Vi,Vj) then 
          total <- total+1; 
          Sj,b <- Sj,b union {<i,a>}; 
        endif 
      endfor; 
      counter[(i,j),a] <- total; 
      if counter[(i,j),a]=0 then 
        delete a from Di; 
        Q <- Q union {<i,a>}; 
      endif; 
    endfor; 
  endfor; 
  return Q; 
end INITIALIZE 

After the initialization, the algorithm AC-4 performs re-revision only for those pairs of 
values of incindental variables that are affected by a previous revision. 

Algorithm AC-4  

procedure AC-4 
  Q <- INITIALIZE; 
  while not Q empty 
    select and delete any pair <j,b> from Q; 
    for each <i,a> from Sj,b do 
      counter[(i,j),a] <- counter[(i,j),a] - 1; 
      if counter[(i,j),a]=0 & a is still in Di then 
        delete a from Di; 
        Q <- Q union {<i,a>}; 
      endif 
    endfor 
  endwhile 
end AC-4 

Both algorithms, AC-3 and AC-4, belong to the most widely used algorithms for 
maintaining arc consistency. It should be also noted that there exist other algorithms AC-
5, AC-6, AC-7 etc. but their are not used as frequently as AC-3 or AC-4. 

Maintaining arc consistency removes many inconsistencies from the constraint graph but 
is any (complete) instantiation of variables from current (reduced) domains a solution to 
the CSP? If the domain size of each variable becomes one, then the CSP has exactly one 
solution which is obtained by assigning to each variable the only possible value in its 
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domain. Otherwise, the answer is no in general. The following example shows such a 
case where the constraint graph is arc consistent, domains are not empty but there is still 
no solution satisfying all constraints.  
 

Example: 

 

This constraint graph is arc consistent but there is no 
solution that satisfies all the constraints. 

  
4.4.3.3 Path Consistency (K-Consistency) 
Given that arc consistency is not enough to eliminate the need for backtracking, is there 
another stronger degree of consistency that may eliminate the need for search? The above 
example shows that if one extends the consistency test to two or more arcs, more 
inconsistent values can be removed. 

A graph is K-consistent if the following is true: Choose values of any K-1 variables that 
satisfy all the constraints among these variables and choose any Kth variable. Then there 
exists a value for this Kth variable that satisfies all the constraints among these K 
variables. A graph is strongly K-consistent if it is J-consistent for all J<=K. 

Node consistency discussed earlier is equivalent to strong 1-consistency and arc-
consistency is equivalent to strong 2-consistency (arc-consistency is usually assumed to 
include node-consistency as well). Algorithms exist for making a constraint graph 
strongly K-consistent for K>2 but in practice they are rarely used because of efficiency 
issues. The exception is the algorithm for making a constraint graph strongly 3-consistent 
that is usually refered as path consistency. Nevertheless, even this algorithm is too 
hungry and a weak form of path consistency was introduced. 

A node representing variable Vi is restricted path consistent if it is arc-consistent, i.e., 
all arcs from this node are arc-consistent, and the following is true: For every value a in 
the domain Di of the variable Vi that has just one supporting value b from the domain of 
incidental variable Vj there exists a value c in the domain of other incidental variable Vk 
such that (a,c) is permitted by the binary constraint between Vi and Vk, and (c,b) is 
permitted by the binary constraint between Vk and Vj. 

The algorithm for making graph restricted path consistent can be naturally based on AC-4 
algorithm that counts the number of supporting values. Although this algorithm removes 
more inconsistent values than any arc-consistency algorithm it does not eliminate the 
need for search in general. Clearly, if a constraint graph containing n nodes is strongly n-
consistent, then a solution to the CSP can be found without any search. But the worst-
case complexity of the algorithm for obtaining n-consistency in a n-node constraint graph 
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is also exponential. If the graph is (strongly) K-consistent for K<n, then in general, 
backtracking cannot be avoided, i.e., there still exist inconsistent values. 

4.4.4 Forward Checking 
Forward checking is the easiest way to prevent future conflicts. Instead of performing arc 
consistency to the instantiated variables, it performs restricted form of arc consistency to 
the not yet instantiated variables. We speak about restricted arc consistency because 
forward checking checks only the constraints between the current variable and the future 
variables. When a value is assigned to the current variable, any value in the domain of a 
"future" variable which conflicts with this assignment is (temporarily) removed from the 
domain. The advantage of this is that if the domain of a future variable becomes empty, it 
is known immediately that the current partial solution is inconsistent. Forward checking 
therefore allows branches of the search tree that will lead to failure to be pruned earlier 
than with simple backtracking. Note that whenever a new variable is considered, all its 
remaining values are guaranteed to be consistent with the past variables, so the checking 
an assignment against the past assignments is no longer necessary.  
 

Algorithm AC-3 for Forward Checking  

procedure AC3-FC(cv) 
  Q <- {(Vi,Vcv) in arcs(G),i>cv}; 
  consistent <- true; 
  while not Q empty & consistent 
    select and delete any arc (Vk,Vm) from Q; 
    if REVISE(Vk,Vm) then 
      consistent <- not Dk empty 
    endif 
  endwhile 
  return consistent 
end AC3-FC 

Forward checking detects the inconsistency earlier than simple backtracking and thus it 
allows branches of the search tree that will lead to failure to be pruned earlier than with 
simple backtracking. This reduces the search tree and (hopefully) the overall amount of 
work done. But it should be noted that forward checking does more work when each 
assignment is added to the current partial solution. 
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Example: (4-queens problem and FC) 

 

Forward checking is almost always a much better choice than simple backtracking. 

4.4.5 Look Ahead 
Forward checking checks only the constraints between the current variable and the future 
variables. So why not to perform full arc consistency that will further reduces the 
domains and removes possible conflicts? This approach is called (full) look ahead or 
maintaining arc consistency (MAC).  

The advantage of look ahead is that it detects also the conflicts between future variables 
and therefore allows branches of the search tree that will lead to failure to be pruned 
earlier than with forward checking. Also as with forward checking, whenever a new 
variable is considered, all its remaining values are guaranteed to be consistent with the 
past variables, so the checking an assignment against the past assignments is no 
necessary. 

Algorithm AC-3 for Look Ahead  

procedure AC3-LA(cv) 
  Q <- {(Vi,Vcv) in arcs(G),i>cv}; 
  consistent <- true; 
  while not Q empty & consistent 
    select and delete any arc (Vk,Vm) from Q; 
    if REVISE(Vk,Vm) then 
      Q <- Q union {(Vi,Vk) such that (Vi,Vk) in 
arcs(G),i#k,i#m,i>cv} 
      consistent <- not Dk empty 
    endif 
  endwhile 
  return consistent 
end AC3-LA 
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Look ahead prunes the search tree further more than forward checking but, again, it 
should be noted that look ahead does even more work when each assignment is added to 
the current partial solution than forward checking. 

Example: (4-queens problem and LA) 

 
 

4.4.6 Comparison of Propagation Techniques 
The following figure shows which constraints are tested when the above described 
propagation techniques are applied. 

 

More constraint propagation at each node will result in the search tree containing fewer 
nodes, but the overall cost may be higher, as the processing at each node will be more 
expensive. In one extreme, obtaining strong n-consistency for the original problem would 
completely eliminate the need for search, but as mentioned before, this is usually more 
expensive than simple backtracking. Actually, in some cases even the full look ahead 
may be more expensive than simple backtracking. That is the reason why forward 
checking and simple backtracking are still used in applications. 
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