

Module
9

Planning

Version 1 CSE IIT, Kharagpur

Lesson
 24

Planning algorithm - I

Version 1 CSE IIT, Kharagpur

9.4 Planning as Search

Planning as Search:

There are two main approaches to solving planning problems, depending on the kind of
search space that is explored:

1. Situation-space search
2. Planning-space search

9.4.1 Situation-Space Search

In situation space search

• the search space is the space of all possible states or situations of the world
• initial state defines one node
• a goal node is a state where all goals in the goal state are satisfied
• a solution plan is the sequence of actions (e.g. operator instances) in the path from

the start node to a goal node

9.4.2 Plan-Space Search

• the search space is the space of all possible plans
• a node corresponds to a partial plan
• initially we will specify an "initial plan" which is one node in this space
• a goal node is a node containing a plan which is complete, satisfying all of the

goals in the goal state
• the node itself contains all of the information for determining a solution plan (e.g.

sequence of actions)

Version 1 CSE IIT, Kharagpur

9.4.3 Situation-Space Planning Algorithms

There are 2 approaches to situation-space planning:

1. Progression situation-space planning
2. Regression situation-space planning

Progression Planning:

• Forward-chaining from initial state to goal state
• Looks just like a state-space search except STRIPS operators are specified instead

of a set of next-move functions
• You can use any search method you like (i.e. BFS, DFS, A*)
• Disadvantage: huge search space to explore, so usually very inefficient

Algorithm:

1. Start from initial state
2. Find all operators whose preconditions are true in the initial state
3. Compute effects of operators to generate successor states
4. Repeat steps #2-#3 until a new state satisfies the goal conditions

The work through of the progression algorithm for the Blocks World example is shown
below:

Step State Applicable Operators Operator
Applied

#1 ontable(A) Λ
ontable(B) Λ
on(C, B) Λ
clear(A) Λ
clear(C) Λ
handempty

pickup(A)
unstack(C,B)

pickup(A)

#2 ~ontable(A)
Λ

putdown(A)
stack(A,C)

stack(A,C)

Version 1 CSE IIT, Kharagpur

ontable(B) Λ
on(C, B) Λ
~clear(A) Λ
clear(C) Λ
~handempty
Λ
holding(A)

#3 ontable(B) Λ
on(C, B) Λ
on(A, C) Λ
clear(A) Λ
~clear(C) Λ
handempty
Λ
~holding(A)

Matches goal state so
STOP!

Regression Planning

• Backward-chaining from goal state to initial state
• Regression situation-space planning is usually more efficient than progression

because many operators are applicable at each state, yet only a small number of
operators are applicable for achieving a given goal

• Hence, regression is more goal-directed than progression situation-space planning
• Disadvantage: cannot always find a plan even if one exists!

Algorithm:

1. Start with goal node corresponding to goal to be achieved
2. Choose an operator that will add one of the goals
3. Replace that goal with the operator's preconditions
4. Repeat steps #2-#3 until you have reached the initial state
5.

While backward-chaining is performed by STRIPS in terms of the generation of goals,
sub-goals, sub-sub-goals, etc., operators are used in the forward direction to generate
successor states, starting from the initial state, until a goal is found.

The work through of the regression algorithm for the Blocks World example is shown
below.

Ste
p

State Stack Plan Note

#1 ontable(A)
Λ
ontable(B)

achieve(on(A,C))

 Stack contains original
goal. State contains
the initial state

Version 1 CSE IIT, Kharagpur

Λ
on(C, B) Λ
clear(A) Λ
clear(C) Λ
handempty

description.

#2 Same. achieve(clear(C), holding(A),
apply(Stack(A,C))
achieve(on(A,C))

 Choose operator Stack
to solve goal popped
from top of goal stack.

#3 Same. achieve(holding(A))
achieve(clear(C))
achieve(clear(C), holding(A),
apply(Stack(A,C))
achieve(on(A,C))

 Order sub-goals
arbitrarily.

#4 Same. achieve(ontable(A), clear(A),
handempty),
apply(pickup(A))
achieve(holding(A))
achieve(clear(C))
achieve(clear(C), holding(A),
apply(Stack(A,C))
achieve(on(A,C))

 Choose operator
pickup to solve goal
popped from top of
goal stack.

#5 ontable(B)
Λ
on(C, B) Λ
clear(C) Λ
holding(A)

achieve(clear(C))
achieve(clear(C), holding(A),
apply(Stack(A,C))
achieve(on(A,C))

Pickup(A
)

Top goal is true in
current state, so pop it
and apply operator
pickup(A).

#6 ontable(B)
Λ
on(C, B) Λ
on(A,C) Λ
clear(A) Λ
handempty

achieve(on(A,C)) pickup(A
)
stack(A,C
)

Top goal achieve(C)
true so pop it. Re-
verify that goals that
are the preconditions
of the stack(A,C)
operator still true, then
pop that and the
operator is applied.

#7 Same. <empty> Re-verify that original
goal is true in current
state, then pop and halt
with empty goal stack
and state description
satisfying original
goal.

Version 1 CSE IIT, Kharagpur

Goal Interaction

Most planning algorithms assume that the goals to be achieved are independent or nearly
independent in the sense that each can be solved separately and then the solutions
concatenated together. If the order of solving a set of goals (either the original goals or a
set of sub-goals which are the preconditions of an operator) fails because solving a latter
goal undoes an earlier goal, then this version of the STRIPS algorithm fails. Hence,
situation-space planners do not allow for interleaving of steps in any solution it finds.

Principle of Least Commitment

The principle of least commitment is the idea of never making a choice unless required to
do so. The advantage of using this principle is you won't have to backtrack later!
In planning, one application of this principle is to never order plan steps unless it's
necessary for some reason. So, partial-order planners exhibit this property because
constraint ordering steps will only be inserted when necessary. On the other hand,
situation-space progression planners make commitments about the order of steps as they
try to find a solution and therefore may make mistakes from poor guesses about the right
order of steps.

Version 1 CSE IIT, Kharagpur

	Planning
	Planning algorithm - I
	Planning as Search
	Situation-Space Search
	Plan-Space Search
	Situation-Space Planning Algorithms
	Progression Planning:
	Regression Planning
	Goal Interaction

