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3.3 Iterative-Deepening A* 

3.3.1 IDA* Algorithm 

Iterative deepening A* or IDA* is similar to iterative-deepening depth-first, but with the 
following modifications: 
The depth bound modified to be an f-limit 

1. Start with  limit = h(start) 
2. Prune any node if f(node) > f-limit 
3. Next f-limit=minimum cost of any node pruned 

 
The cut-off for nodes expanded in an iteration is decided by the f-value of the nodes. 
 

a

b

c

de
fa

b

c

de
f

 
Figure 1 

 
Consider the graph in Figure 3. In the first iteration, only node a is expanded. When a is 
expanded b and e are generated. The f value of both are found to be 15. 
 
For the next iteration, a f-limit of 15 is selected, and in this iteration, a, b and c are 
expanded. This is illustrated in Figure 4. 
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Figure 2: f-limit = 15 
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Figure 3: f-limit = 21 

 
 

3.3.2 IDA* Analysis 

IDA* is complete & optimal Space usage is linear in the depth of solution. Each iteration 
is depth first search, and thus it does not require a priority queue. 
 
The number of nodes expanded relative to A* depends on # unique values of heuristic 
function. The number of iterations is equal tit h number of distinct f values less than or 
equal to C*. 
 
• In problems like 8 puzzle using the Manhattan distance heuristic, there are few 

possible f values (f values are only integral in this case.). Therefore the number of 
node expansions in this case is close to the number  of nodes A* expands. 

• But in problems like traveling salesman (TSP) using real valued costs, : each f value 
may be unique, and many more nodes may need to be expanded. In the worst case, if 
all f values are distinct, the algorithm will expand only one new node per iteration, 
and thus if A* expands N nodes, the maximum number of nodes expanded by IDA* 
is 1+2+…+ N  = O(N2)   

Why do we use IDA*?  In the case of A*, it I usually the case that for slightly larger 
problems, the algorithm runs out of main memory much earlier than the algorithm runs 
out of time. IDA* can be used in such cases as the space requirement is linear. In fact 15-
puzzle problems can be easily solved by IDA*, and may run out of space on A*.   

 
 
IDA* is not thus suitable for TSP type of problems. Also IDA* generates duplicate nodes 
in cyclic graphs. Depth first search strategies are not very suitable for graphs containing 
too many cycles. 
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Space required : O(bd) 
 
IDA* is complete, optimal, and optimally efficient (assuming a consistent, admissible 
heuristic), and requires only a polynomial amount of storage in the worst case: 
 

 
 

3.4 Other Memory limited heuristic search 

IDA* uses very little memory 
Other algorithms may use more memory for more efficient search. 

3.4.1 RBFS: Recursive Breadth First Search 

RBFS uses only linear space.  
It mimics best first search. 
It keeps track of the f-value of the best alternative path available from any ancestor of the 
current node. 
If the current node exceeds this limit, the alternative path is explored. 
RBFS remembers the f-value of the best leaf in the forgotten sub-tree. 
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RBFS (node: N, value: F(N), bound: B) 
 
    IF f(N)>B, RETURN f(N) 
    IF N is a goal, EXIT algorithm 
    IF N has no children, RETURN infinity   
    FOR each child Ni of N, 
            IF f(N)<F(N), F[i] := MAX(F(N),f(Ni))    
            ELSE F[i] := f(Ni) 
sort Ni and F[i] in increasing order of F[i] 
    IF only one child, F[2] := infinity 
    WHILE (F[1] <= B and F[1] < infinity) 
                 F[1] := RBFS(N1, F[1], MIN(B, F[2])) 
       insert Ni and F[1] in sorted order 
RETURN F[1] 
 

 

3.4.2 MA* and SMA* 

MA* and SMA* are restricted memory best first search algorithms that utilize all the 
memory available. 
The algorithm executes best first search while memory is available. 
When the memory is full the worst node is dropped but the value of the forgotten node is 
backed up at the parent. 

3.5 Local Search 

Local search methods work on complete state formulations. They keep only a small 
number of nodes in memory. 
Local search is useful for solving optimization problems:  

o Often it is easy to find a solution 
o But hard to find the best solution 

Algorithm goal: 
find optimal configuration (e.g., TSP), 

• Hill climbing  
• Gradient descent  
• Simulated annealing  
• For some problems the state description contains all of the information relevant 

for a solution. Path to the solution is unimportant. 
• Examples:  

o map coloring  
o 8-queens  
o cryptarithmetic  
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• Start with a state configuration that violates some of the constraints for being a 
solution, and make gradual modifications to eliminate the violations. 

• One way to visualize iterative improvement algorithms is to imagine every 
possible state laid out on a landscape with the height of each state corresponding 
to its goodness. Optimal solutions will appear as the highest points. Iterative 
improvement works by moving around on the landscape seeking out the peaks by 
looking only at the local vicinity. 

 
 

3.5.1 Iterative improvement 

In many optimization problems, the path is irrelevant; the goal state itself is the solution.  
An example of such problem is to find configurations satisfying constraints (e.g., n-
queens). 

Algorithm: 
– Start with a solution 
– Improve it towards a good solution 
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3.5.1.1 Example: 

N queens 
Goal: Put n chess-game queens on an n x n board, with no two queens on the same row, 
column, or diagonal. 

Example: 

Chess board reconfigurations 

Here, goal state is initially unknown but is specified by constraints that it must satisfy  
 
Hill climbing (or gradient ascent/descent) 
 
Iteratively maximize “value” of current state, by replacing it by successor state that has 
highest value, as long as possible. 
 
Note: minimizing a “value” function v(n) is equivalent to maximizing –v(n), 
 
 thus both notions are used interchangeably. 
 
Hill climbing – example 
 
Complete state formulation for 8 queens 
Successor function: move a single queen to another square in the same column 
Cost: number of pairs that are attacking each other. 
Minimization problem 
 

Hill climbing (or gradient ascent/descent) 

• Iteratively maximize “value” of current state, by replacing it by successor state that 
has highest value, as long as possible. 

Note: minimizing a “value” function v(n) is equivalent to maximizing –v(n), thus both 
notions are used interchangeably. 

• Algorithm:  
1. determine successors of current state  
2. choose successor of maximum goodness (break ties randomly)  
3. if goodness of best successor is less than current state's goodness, stop  
4. otherwise make best successor the current state and go to step 1  

• No search tree is maintained, only the current state. 
• Like greedy search, but only states directly reachable from the current state are 

considered. 
• Problems:  
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Local maxima  
Once the top of a hill is reached the algorithm will halt since every possible step 
leads down.  
 
Plateaux  
If the landscape is flat, meaning many states have the same goodness, algorithm 
degenerates to a random walk.  
 
Ridges  
If the landscape contains ridges, local improvements may follow a zigzag path up 
the ridge, slowing down the search.  

• Shape of state space landscape strongly influences the success of the search 
process. A very spiky surface which is flat in between the spikes will be very 
difficult to solve. 

• Can be combined with nondeterministic search to recover from local maxima. 
• Random-restart hill-climbing is a variant in which reaching a local maximum 

causes the current state to be saved and the search restarted from a random point. 
After several restarts, return the best state found. With enough restarts, this 
method will find the optimal solution. 

• Gradient descent is an inverted version of hill-climbing in which better states are 
represented by lower cost values. Local minima cause problems instead of local 
maxima. 

Hill climbing - example 

• Complete state formulation for 8 queens 
– Successor function: move a single queen to another square in the same column 
– Cost: number of pairs that are attacking each other. 

• Minimization problem 

 

• Problem: depending on initial state, may get stuck in local extremum. 
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Minimizing energy 

• Compare our state space to that of a physical system that is subject to natural 
interactions 

• Compare our value function to the overall  potential energy E of the system. 
• On every updating, we have DE ≤ 0 
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Hence the dynamics of the system tend to move E toward a minimum.    

We stress that there may be different such states — they are local minima.  Global 
minimization is not guaranteed.   

 
• Question: How do you avoid this local minima? 
 

starting
point

descend
direction

local minima global minima

barrier to local search

 

Consequences of Occasional Ascents 

Simulated annealing: basic idea 

• From current state, pick a random successor state; 
• If it has better value than current state, then “accept the transition,” that is, use 

successor state as current state; 
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Simulated annealing: basic idea 

• Otherwise, do not give up, but instead flip a coin and accept the transition with a 
given probability (that is lower as the successor is worse). 

• So we accept to sometimes “un-optimize” the value function a little with a non-zero 
probability. 

 

• Instead of restarting from a random point, we can allow the search to take some 
downhill steps to try to escape local maxima. 

• Probability of downward steps is controlled by temperature parameter. 
• High temperature implies high chance of trying locally "bad" moves, allowing 

nondeterministic exploration. 
• Low temperature makes search more deterministic (like hill-climbing). 
• Temperature begins high and gradually decreases according to a predetermined 

annealing schedule. 
• Initially we are willing to try out lots of possible paths, but over time we gradually 

settle in on the most promising path. 
• If temperature is lowered slowly enough, an optimal solution will be found. 
• In practice, this schedule is often too slow and we have to accept suboptimal 

solutions. 
Algorithm: 

set current to start state 
for time = 1 to infinity { 
   set Temperature to annealing_schedule[time] 
   if Temperature = 0 { 
      return current 
   } 
   randomly pick a next state from successors of current 
   set ΔE to value(next) - value(current) 
   if ΔE > 0 { 
      set current to next 
   } else { 
      set current to next with probability eΔE/Temperature

   } 
} 

• Probability of moving downhill for negative ΔE values at different temperature 
ranges: 
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Other local search methods 
• Genetic Algorithms 

Questions for Lecture 6 

1. Compare IDA* with A* in terms of time and space complexity.  
2. Is hill climbing guaranteed to find a solution to the n-queens problem ? 
3. Is simulated annealing guaranteed to find the optimum solution of an optimization 

problem like TSP ? 
 
1. Suppose you have the following search space: 
  

State next cost 
A B 4 
A C 1 
B D 3 
B E 8 
C C 0 
C D 2 
C F 6 
D C 2 
D E 4 
E G 2 
F G 8 
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a. Draw the state space of this problem. 
b. Assume that the initial state is A and the goal state is G. Show how each of 

the following search strategies would create a search tree to find a path from 
the initial state to the goal state:  

 
i. Uniform cost search  

ii. Greedy search 
iii. A* search 

At each step of the search algorithm, show which node is being expanded, and the 
content of fringe. Also report the eventual solution found by each algorithm, and the 
solution cost.  
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