

Module
2

Problem Solving

using Search-
(Single agent search)

Version 1 CSE IIT, Kharagpur

Lesson
6

Informed Search

Strategies-II

Version 1 CSE IIT, Kharagpur

3.3 Iterative-Deepening A*

3.3.1 IDA* Algorithm

Iterative deepening A* or IDA* is similar to iterative-deepening depth-first, but with the
following modifications:
The depth bound modified to be an f-limit

1. Start with limit = h(start)
2. Prune any node if f(node) > f-limit
3. Next f-limit=minimum cost of any node pruned

The cut-off for nodes expanded in an iteration is decided by the f-value of the nodes.

a

b

c

de
fa

b

c

de
f

Figure 1

Consider the graph in Figure 3. In the first iteration, only node a is expanded. When a is
expanded b and e are generated. The f value of both are found to be 15.

For the next iteration, a f-limit of 15 is selected, and in this iteration, a, b and c are
expanded. This is illustrated in Figure 4.

a

b

c

de
fa

b

c

de
f

Figure 2: f-limit = 15

Version 1 CSE IIT, Kharagpur

a

b

c

de
fa

b

c

de
f

Figure 3: f-limit = 21

3.3.2 IDA* Analysis

IDA* is complete & optimal Space usage is linear in the depth of solution. Each iteration
is depth first search, and thus it does not require a priority queue.

The number of nodes expanded relative to A* depends on # unique values of heuristic
function. The number of iterations is equal tit h number of distinct f values less than or
equal to C*.

• In problems like 8 puzzle using the Manhattan distance heuristic, there are few

possible f values (f values are only integral in this case.). Therefore the number of
node expansions in this case is close to the number of nodes A* expands.

• But in problems like traveling salesman (TSP) using real valued costs, : each f value
may be unique, and many more nodes may need to be expanded. In the worst case, if
all f values are distinct, the algorithm will expand only one new node per iteration,
and thus if A* expands N nodes, the maximum number of nodes expanded by IDA*
is 1+2+…+ N = O(N2)

Why do we use IDA*? In the case of A*, it I usually the case that for slightly larger
problems, the algorithm runs out of main memory much earlier than the algorithm runs
out of time. IDA* can be used in such cases as the space requirement is linear. In fact 15-
puzzle problems can be easily solved by IDA*, and may run out of space on A*.

IDA* is not thus suitable for TSP type of problems. Also IDA* generates duplicate nodes
in cyclic graphs. Depth first search strategies are not very suitable for graphs containing
too many cycles.

Version 1 CSE IIT, Kharagpur

Space required : O(bd)

IDA* is complete, optimal, and optimally efficient (assuming a consistent, admissible
heuristic), and requires only a polynomial amount of storage in the worst case:

3.4 Other Memory limited heuristic search

IDA* uses very little memory
Other algorithms may use more memory for more efficient search.

3.4.1 RBFS: Recursive Breadth First Search

RBFS uses only linear space.
It mimics best first search.
It keeps track of the f-value of the best alternative path available from any ancestor of the
current node.
If the current node exceeds this limit, the alternative path is explored.
RBFS remembers the f-value of the best leaf in the forgotten sub-tree.

Version 1 CSE IIT, Kharagpur

RBFS (node: N, value: F(N), bound: B)

 IF f(N)>B, RETURN f(N)
 IF N is a goal, EXIT algorithm
 IF N has no children, RETURN infinity
 FOR each child Ni of N,
 IF f(N)<F(N), F[i] := MAX(F(N),f(Ni))
 ELSE F[i] := f(Ni)
sort Ni and F[i] in increasing order of F[i]
 IF only one child, F[2] := infinity
 WHILE (F[1] <= B and F[1] < infinity)
 F[1] := RBFS(N1, F[1], MIN(B, F[2]))
 insert Ni and F[1] in sorted order
RETURN F[1]

3.4.2 MA* and SMA*

MA* and SMA* are restricted memory best first search algorithms that utilize all the
memory available.
The algorithm executes best first search while memory is available.
When the memory is full the worst node is dropped but the value of the forgotten node is
backed up at the parent.

3.5 Local Search

Local search methods work on complete state formulations. They keep only a small
number of nodes in memory.
Local search is useful for solving optimization problems:

o Often it is easy to find a solution
o But hard to find the best solution

Algorithm goal:
find optimal configuration (e.g., TSP),

• Hill climbing
• Gradient descent
• Simulated annealing
• For some problems the state description contains all of the information relevant

for a solution. Path to the solution is unimportant.
• Examples:

o map coloring
o 8-queens
o cryptarithmetic

Version 1 CSE IIT, Kharagpur

• Start with a state configuration that violates some of the constraints for being a
solution, and make gradual modifications to eliminate the violations.

• One way to visualize iterative improvement algorithms is to imagine every
possible state laid out on a landscape with the height of each state corresponding
to its goodness. Optimal solutions will appear as the highest points. Iterative
improvement works by moving around on the landscape seeking out the peaks by
looking only at the local vicinity.

3.5.1 Iterative improvement

In many optimization problems, the path is irrelevant; the goal state itself is the solution.
An example of such problem is to find configurations satisfying constraints (e.g., n-
queens).

Algorithm:
– Start with a solution
– Improve it towards a good solution

Version 1 CSE IIT, Kharagpur

3.5.1.1 Example:

N queens
Goal: Put n chess-game queens on an n x n board, with no two queens on the same row,
column, or diagonal.

Example:

Chess board reconfigurations

Here, goal state is initially unknown but is specified by constraints that it must satisfy

Hill climbing (or gradient ascent/descent)

Iteratively maximize “value” of current state, by replacing it by successor state that has
highest value, as long as possible.

Note: minimizing a “value” function v(n) is equivalent to maximizing –v(n),

 thus both notions are used interchangeably.

Hill climbing – example

Complete state formulation for 8 queens
Successor function: move a single queen to another square in the same column
Cost: number of pairs that are attacking each other.
Minimization problem

Hill climbing (or gradient ascent/descent)

• Iteratively maximize “value” of current state, by replacing it by successor state that
has highest value, as long as possible.

Note: minimizing a “value” function v(n) is equivalent to maximizing –v(n), thus both
notions are used interchangeably.

• Algorithm:
1. determine successors of current state
2. choose successor of maximum goodness (break ties randomly)
3. if goodness of best successor is less than current state's goodness, stop
4. otherwise make best successor the current state and go to step 1

• No search tree is maintained, only the current state.
• Like greedy search, but only states directly reachable from the current state are

considered.
• Problems:

Version 1 CSE IIT, Kharagpur

Local maxima
Once the top of a hill is reached the algorithm will halt since every possible step
leads down.

Plateaux
If the landscape is flat, meaning many states have the same goodness, algorithm
degenerates to a random walk.

Ridges
If the landscape contains ridges, local improvements may follow a zigzag path up
the ridge, slowing down the search.

• Shape of state space landscape strongly influences the success of the search
process. A very spiky surface which is flat in between the spikes will be very
difficult to solve.

• Can be combined with nondeterministic search to recover from local maxima.
• Random-restart hill-climbing is a variant in which reaching a local maximum

causes the current state to be saved and the search restarted from a random point.
After several restarts, return the best state found. With enough restarts, this
method will find the optimal solution.

• Gradient descent is an inverted version of hill-climbing in which better states are
represented by lower cost values. Local minima cause problems instead of local
maxima.

Hill climbing - example

• Complete state formulation for 8 queens
– Successor function: move a single queen to another square in the same column
– Cost: number of pairs that are attacking each other.

• Minimization problem

• Problem: depending on initial state, may get stuck in local extremum.

Global maximum

Local maximum

states

va
lu

e

Global maximum

Local maximum

states

va
lu

e

Version 1 CSE IIT, Kharagpur

Minimizing energy

• Compare our state space to that of a physical system that is subject to natural
interactions

• Compare our value function to the overall potential energy E of the system.
• On every updating, we have DE ≤ 0

B

C

A

Basin of

Attraction for C

D

E

Hence the dynamics of the system tend to move E toward a minimum.

We stress that there may be different such states — they are local minima. Global
minimization is not guaranteed.

• Question: How do you avoid this local minima?

starting
point

descend
direction

local minima global minima

barrier to local search

Consequences of Occasional Ascents

Simulated annealing: basic idea

• From current state, pick a random successor state;
• If it has better value than current state, then “accept the transition,” that is, use

successor state as current state;

Version 1 CSE IIT, Kharagpur

Simulated annealing: basic idea

• Otherwise, do not give up, but instead flip a coin and accept the transition with a
given probability (that is lower as the successor is worse).

• So we accept to sometimes “un-optimize” the value function a little with a non-zero
probability.

• Instead of restarting from a random point, we can allow the search to take some
downhill steps to try to escape local maxima.

• Probability of downward steps is controlled by temperature parameter.
• High temperature implies high chance of trying locally "bad" moves, allowing

nondeterministic exploration.
• Low temperature makes search more deterministic (like hill-climbing).
• Temperature begins high and gradually decreases according to a predetermined

annealing schedule.
• Initially we are willing to try out lots of possible paths, but over time we gradually

settle in on the most promising path.
• If temperature is lowered slowly enough, an optimal solution will be found.
• In practice, this schedule is often too slow and we have to accept suboptimal

solutions.
Algorithm:

set current to start state
for time = 1 to infinity {
 set Temperature to annealing_schedule[time]
 if Temperature = 0 {
 return current
 }
 randomly pick a next state from successors of current
 set ΔE to value(next) - value(current)
 if ΔE > 0 {
 set current to next
 } else {
 set current to next with probability eΔE/Temperature

 }
}

• Probability of moving downhill for negative ΔE values at different temperature
ranges:

Version 1 CSE IIT, Kharagpur

Version 1 CSE IIT, Kharagpur

Other local search methods
• Genetic Algorithms

Questions for Lecture 6

1. Compare IDA* with A* in terms of time and space complexity.
2. Is hill climbing guaranteed to find a solution to the n-queens problem ?
3. Is simulated annealing guaranteed to find the optimum solution of an optimization

problem like TSP ?

1. Suppose you have the following search space:

State next cost
A B 4
A C 1
B D 3
B E 8
C C 0
C D 2
C F 6
D C 2
D E 4
E G 2
F G 8

Version 1 CSE IIT, Kharagpur

a. Draw the state space of this problem.
b. Assume that the initial state is A and the goal state is G. Show how each of

the following search strategies would create a search tree to find a path from
the initial state to the goal state:

i. Uniform cost search

ii. Greedy search
iii. A* search

At each step of the search algorithm, show which node is being expanded, and the
content of fringe. Also report the eventual solution found by each algorithm, and the
solution cost.

Version 1 CSE IIT, Kharagpur

	Problem Solvingusing Search-(Single agent search)
	Informed Search Strategies-II
	Iterative-Deepening A*
	IDA* Algorithm
	IDA* Analysis

	Other Memory limited heuristic search
	RBFS: Recursive Breadth First Search
	MA* and SMA*

	Local Search
	Iterative improvement
	Example
	Chess board reconfigurations
	Hill climbing (or gradient ascent/descent)
	Hill climbing - example
	Minimizing energy

	Questions

