

Module
7

Knowledge

Representation and
Logic –

 (Rule based Systems)

Version 1 CSE IIT, Kharagpur

Lesson
18

Rule based Systems - II

Version 1 CSE IIT, Kharagpur

7.2.5 Programs in PROLOG

These minimal notes on Prolog show only some of its flavor.

Here are facts

 plays(ann,fido).
 friend(john,sam).

where ann, fido, john, and sam are individuals, and plays and friend are functors. And
here is a rule
 likes(X,Y) :- plays(X,Y),friend(X,Y).

It says that if X plays with Y and X is a friend of Y then X likes Y. Variables start with
capital letters (If we are not interested in the value of a variable, we can just use _
(underscore)).

In a rule the left-hand side and the right-hand side are called respectively the head and
the tail of the rule.

The prompt in prolog is

 | ?-

You exit prolog with the statement
 halt.

You can add rules and facts to the current session in a number of ways:

1. You can enter clauses from the terminal as follows:
2. | ?- consult(user).
3. | like(b,a).
4. | like(d,c).
5. ^D

which adds the two clauses to the working space.

6. Or you can read in a file:
7. | ?- consult('filename').

which is added at the end of the working space.

8. Or you can assert a clause
9. | ?- assert(< clause >).
10.

Here are some confusing "equalities" in prolog:

Version 1 CSE IIT, Kharagpur

 variable arithmetic
 predicate relation substitution computation

 == identical no no
 = unifiable yes no
 =:= same value no yes
 is is the yes yes
 value of

and some examples of their use:
 ?- X == Y.
 no

 ?- X + 1 == 2 + Y.
 no

 ?- X + 1 = 2 + Y.
 X = 2
 Y = 1

 ?- X + 1 = 1 + 2.
 no

Example: Factorial1

 factorial(0,1).
 factorial(N,F) :- N>0, N1 is N-1, factorial(N1,F1),F is N*F1.
then
 ?- factorial(5,F).
 F = 120

 ?- factorial(X,120).
 instantiation error

Example: Factorial2: dropping N>0 from factorial1

 factorial(0,1).
 factorial(N,F) :- N1 is N-1, factorial(N1,F1),F is N*F1.
then
 ?- factorial(5,F).
 F = 120; Here ";" asks for next value of F
 keeps on going until stack overflow

Example: Factorial3: Changing order of terms

(1) factorial(0,1).
(2) factorial(N,F) :- factorial(N1,F1), N is N1+1, F is N*F1.

Version 1 CSE IIT, Kharagpur

then
 ?- factorial(5,F).
 F = 120

 ?- factorial(X,120).
 X = 5;
 integer overflow

Here is why factorial(X,120) returns 5. For brevity, instead of
"factorial"
we will write "f".

 f(X,120)
 / |
 / |
[0/N5,1/F5,1/N4,1/F4,2/N3,2/F3,3/N2,6/F2,4/N1,24/F1,5/N1]
 / +-----------------------+
 / | | |
 f(0,1) f(N1,F1) X is N1+1 6 is X*F1
 / |
 / | [0/N5,1/F5,1/N4,1/F4,2/N3,2/F3,3/N2,6/F2,4/N1,24/F1]
 / +-----------------------+
 / | | |
 f(0,1) f(N2,F2) N1 is N2+1 F1 is N1*F2
 / |
 / | [0/N5,1/F5,1/N4,1/F4,2/N3,2/F3,3/N2,6/F2]
 / +-----------------------+
 / | | |
 f(0,1) f(N3,F3) N2 is N3+1 F2 is N2*F3
 / |
 / | [0/N5,1/F5,1/N4,1/F4,2/N3,2/F3]
 / +-----------------------+
 / | | |
 f(0,1) f(N4,F4) N3 is N4+1 F3 is N3*F4
 / |
 / | [0/N5,1/F5,1/N4,1/F4]
 / +-----------------------+
 / | | |
 f(0,1) f(N5,F5) N4 is N5+1 F4 is N4*F5
 |
 |
 | [0/N5,1/F5]
 |
 f(0,1)
In this diagram we see the substitutions computed. Much is not said in the diagram, for
example why we abandon the unifications with the various f(0,1)s. [Let's say it for the
second f(0,1) from the top: because it forces the substitution [0/N1,1/F1,1/X] and this
cause 6 is X*F1 to fail.]

Lists
Lists are very much as in lisp. In place of Lisp's cons, in Prolog we use the "." or dot:

Version 1 CSE IIT, Kharagpur

 Dot Notation List Notation Lisp Notation

 .(X,Y) [X | Y] (X . Y)
 .(X, .(Y,Z)) [X,Y|Z] (X (Y . Z))
 .(X, .(Y, .(Z, []))) [X,Y,Z] (X Y Z)

Example: len

 len([],0).
 len([_|T], N) :- len(T,M), N is M+1.

 ?- len([a,b,c],X).
 X = 3

 ?- len([a,b,c], 3).
 yes

 ?- len([a,b,c], 5).
 no

Example: member

member(X,Y) is inteded to mean X is one of the top level elements of the list Y.
 member(X,[X|_]).
 member(X,[_|T]) :- member(X,T).

 ?- member(X, [1,2,3,4,5]).
 X=1;
 X=2;
 X=3;
 X=4;
 X=5;
 no

Example: select

select(X,A,R) is intended to mean that X is a top level element of the list A and that R is
what is left of A after taking X out of it.
 select(H,[H|T],T).
 select(X,[H|T],[H|T1]) :- select(X,T,T1).

 ?- select(X,[a,b,c],R).
 X=a
 R=[b,c];
 X=b
 R=[a,c];
 X=c
 R=[a,b];
 No

Version 1 CSE IIT, Kharagpur

The Cryptography Problem

Here is a problem:
 S E N D +
 M O R E

 M O N E Y
to be solved by mapping the letters into distinct digits and then doing regular arithmetic.
We add variables to represent the various carries:
 C3 C2 C1
 S E N D +
 M O R E

 M O N E Y
We observe that carries can only be 0 or 1 and thus that M has to be 1. Then here is a
solution:
 solve([S,E,N,D], [M,O,R,E], [M,O,N,E,Y]) :-
 M=1, L=[2,3,4,5,6,7,8,9],
 select(S,L,L1), S>0, (C3=0; C3=1), ";" means OR
 O is S+M+C3-10*M, select(O, L1, L2),
 select(E,L2,L3), (C2=0;C2=1),
 N is E+O+C2-10*C3, select(N,L3,L4), (C1=0;C1=1),
 R is E+10*C2-(N+C1), select(R,L4,L5),
 select(D,L5,L6),
 Y is D+E-10*C1, select(Y,L6,_).

 ?- solve([S,E,N,D], [M,O,R,E], [M,O,N,E,Y]).
 S=9
 E=5
 N=6
 D=7
 M=1
 O=0
 R=8
 Y=2;
 No

7.2.6 Expert Systems

An expert system is a computer program that contains some of the subject-specific
knowledge of one or more human experts. An expert systems are meant to solve real
problems which normally would require a specialized human expert (such as a doctor or a
minerologist). Building an expert system therefore first involves extracting the relevant
knowledge from the human expert. Such knowledge is often heuristic in nature, based on
useful ``rules of thumb'' rather than absolute certainties. Extracting it from the expert in a
way that can be used by a computer is generally a difficult task, requiring its own
expertise. A knowledge engineer has the job of extracting this knowledge and building
the expert system knowledge base.

Version 1 CSE IIT, Kharagpur

A first attempt at building an expert system is unlikely to be very successful. This is
partly because the expert generally finds it very difficult to express exactly what
knowledge and rules they use to solve a problem. Much of it is almost subconscious, or
appears so obvious they don't even bother mentioning it. Knowledge acquisition for
expert systems is a big area of research, with a wide variety of techniques developed.
However, generally it is important to develop an initial prototype based on information
extracted by interviewing the expert, then iteratively refine it based on feedback both
from the expert and from potential users of the expert system.

In order to do such iterative development from a prototype it is important that the expert
system is written in a way that it can easily be inspected and modified. The system should
be able to explain its reasoning (to expert, user and knowledge engineer) and answer
questions about the solution process. Updating the system shouldn't involve rewriting a
whole lot of code - just adding or deleting localized chunks of knowledge.

The most widely used knowledge representation scheme for expert systems is rules.
Typically, the rules won't have certain conclusions - there will just be some degree of
certainty that the conclusion will hold if the conditions hold. Statistical techniques are
used to determine these certainties. Rule-based systems, with or without certainties, are
generally easily modifiable and make it easy to provide reasonably helpful traces of the
system's reasoning. These traces can be used in providing explanations of what it is
doing.

Expert systems have been used to solve a wide range of problems in domains such as
medicine, mathematics, engineering, geology, computer science, business, law, defence
and education. Within each domain, they have been used to solve problems of different
types. Types of problem involve diagnosis (e.g., of a system fault, disease or student
error); design (of a computer systems, hotel etc); and interpretation (of, for example,
geological data). The appropriate problem solving technique tends to depend more on the
problem type than on the domain. Whole books have been written on how to choose your
knowledge representation and reasoning methods given characteristics of your problem.

The following figure shows the most important modules that make up a rule-based expert
system. The user interacts with the system through a user interface which may use
menus, natural language or any other style of interaction). Then an inference engine is
used to reason with both the expert knowledge (extracted from our friendly expert) and
data specific to the particular problem being solved. The expert knowledge will typically
be in the form of a set of IF-THEN rules. The case specific data includes both data
provided by the user and partial conclusions (along with certainty measures) based on
this data. In a simple forward chaining rule-based system the case specific data will be
the elements in working memory.

Version 1 CSE IIT, Kharagpur

Almost all expert systems also have an explanation subsystem, which allows the program
to explain its reasoning to the user. Some systems also have a knowledge base editor
which help the expert or knowledge engineer to easily update and check the knowledge
base.

One important feature of expert systems is the way they (usually) separate domain
specific knowledge from more general purpose reasoning and representation techniques.
The general purpose bit (in the dotted box in the figure) is referred to as an expert system
shell. As we see in the figure, the shell will provide the inference engine (and knowledge
representation scheme), a user interface, an explanation system and sometimes a
knowledge base editor. Given a new kind of problem to solve (say, car design), we can
usually find a shell that provides the right sort of support for that problem, so all we need
to do is provide the expert knowledge. There are numerous commercial expert system
shells, each one appropriate for a slightly different range of problems. (Expert systems
work in industry includes both writing expert system shells and writing expert systems
using shells.) Using shells to write expert systems generally greatly reduces the cost and
time of development.

Version 1 CSE IIT, Kharagpur

Questions

1. Consider the first-order logic sentences defined below.

Use backward chaining to find ALL answers for the following queries. When matching
rules, proceed from top to bottom, and evaluate subgoals from left to right.

Query 1:

Query 2:

2. Translate the following first-order logic sentences into Prolog. Note, some sentences

may require more than one Prolog statement.

3. Write a PROLOG programs to append two lists.

Version 1 CSE IIT, Kharagpur

Solution
1. The proof trees are shown below:

Query 1:

Query 2:

Version 1 CSE IIT, Kharagpur

2. Prolog statements are

a.

b.

c.

d.

e.

3. Prolog program

append(nil,L,L).
append(c(X,L),M,c(X,N)) :- append(L,M,N).

Version 1 CSE IIT, Kharagpur

	Knowledge Representation and Logic –(Rule based Systems)
	Rule based Systems - II
	Programs in PROLOG
	Lists
	The Cryptography Problem

	Expert Systems
	Questions
	Solution

