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7.1 Instructional Objective 
• The students should understand the use of rules as a restricted class of first order logic 

statements 
• The student should be familiar with the concept of Horn clause 
• Students should be able to understand and implement the following reasoning 

algorithm 
o Forward chaining 
o Backward chaining 

• Students should understand the nature of the PROLOG programming language and 
the reasoning method used in it. 

• Students should be able to write elementary PROLOG programs 
• Students should understand the architecture and organization of expert systems and 

issues involved in designing an expert system  
 
At the end of this lesson the student should be able to do the following: 

• Represent a knowledge base as a set of rules if possible 
• Apply forward/backward chaining algorithm as suitable 
• Write elementary programs in PROLOG 
• Design expert systems 
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7.2 Rule Based Systems 
Instead of representing knowledge in a relatively declarative, static way (as a bunch of 
things that are true), rule-based system represent knowledge in terms of a bunch of rules 
that tell you what you should do or what you could conclude in different situations. A 
rule-based system consists of a bunch of IF-THEN rules, a bunch of facts, and some 
interpreter controlling the application of the rules, given the facts. Hence, this are also 
sometimes referred to as production systems. Such rules can be represented using Horn 
clause logic. 
 
There are two broad kinds of rule system: forward chaining systems, and backward 
chaining systems. In a forward chaining system you start with the initial facts, and keep 
using the rules to draw new conclusions (or take certain actions) given those facts. In a 
backward chaining system you start with some hypothesis (or goal) you are trying to 
prove, and keep looking for rules that would allow you to conclude that hypothesis, 
perhaps setting new subgoals to prove as you go. Forward chaining systems are primarily 
data-driven, while backward chaining systems are goal-driven. We'll look at both, and 
when each might be useful.  
 
7.2.1 Horn Clause Logic  
There is an important special case where inference can be made substantially more 
focused than in the case of general resolution. This is the case where all the clauses are 
Horn clauses.  

Definition: A Horn clause is a clause with at most one positive literal.  

Any Horn clause therefore belongs to one of four categories:  

• A rule: 1 positive literal, at least 1 negative literal. A rule has the form "~P1 V 
~P2 V ... V ~Pk V Q". This is logically equivalent to "[P1^P2^ ... ^Pk] => Q"; 
thus, an if-then implication with any number of conditions but one conclusion. 
Examples: "~man(X) V mortal(X)" (All men are mortal); "~parent(X,Y) V 
~ancestor(Y,Z) V ancestor(X,Z)" (If X is a parent of Y and Y is an ancestor of Z 
then X is an ancestor of Z.)  

• A fact or unit: 1 positive literal, 0 negative literals. Examples: "man(socrates)", 
"parent(elizabeth,charles)", "ancestor(X,X)" (Everyone is an ancestor of 
themselves (in the trivial sense).)  

• A negated goal : 0 positive literals, at least 1 negative literal. In virtually all 
implementations of Horn clause logic, the negated goal is the negation of the 
statement to be proved; the knowledge base consists entirely of facts and goals. 
The statement to be proven, therefore, called the goal, is therefore a single unit or 
the conjuction of units; an existentially quantified variable in the goal turns into a 
free variable in the negated goal. E.g. If the goal to be proven is "exists (X) 
male(X) ^ ancestor(elizabeth,X)" (show that there exists a male descendent of 
Elizabeth) the negated goal will be "~male(X) V ~ancestor(elizabeth,X)".  
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• The null clause: 0 positive and 0 negative literals. Appears only as the end of a 
resolution proof.  

Now, if resolution is restricted to Horn clauses, some interesting properties appear. Some 
of these are evident; others I will just state and you can take on faith.  

I. If you resolve Horn clauses A and B to get clause C, then the positive literal of A will 
resolve against a negative literal in B, so the only positive literal left in C is the one from 
B (if any). Thus, the resolvent of two Horn clauses is a Horn clause.  

II. If you resolve a negated goal G against a fact or rule A to get clause C, the positive 
literal in A resolves against a negative literal in G. Thus C has no positive literal, and thus 
is either a negated goal or the null clause.  

III. Therefore: Suppose you are trying to prove Phi from Gamma, where ~Phi is a 
negated goal, and Gamma is a knowledge base of facts and rules. Suppose you use the set 
of support strategy, in which no resolution ever involves resolving two clauses from 
Gamma together. Then, inductively, every resolution combines a negated goal with a fact 
or rule from Gamma and generates a new negated goal. Moreover, if you take a 
resolution proof, and trace your way back from the null clause at the end to ~Phi at the 
beginning, since every resolution involves combining one negated goal with one clause 
from Gamma, it is clear that the sequence of negated goals involved can be linearly 
ordered. That is, the final proof, ignoring dead ends has the form  

   ~Phi resolves with C1 from Gamma, generating negated goal P2 
    P2 resolves with C2 from Gamma, generating negated goal P3 
   ... 
    Pk resolves with C2 from Gamma, generating the null clause. 

IV. Therefore, the process of generating the null clause can be viewed as a state space 
search where:  

• A state is a negated goal.  
• A operator on negated goal P is to resolve it with a clause C from Gamma.  
• The start state is ~Phi  
• The goal state is the null clause.  

V. Moreover, it turns out that it doesn't really matter which literal in P you choose to 
resolve. All the literals in P will have to be resolved away eventually, and the order 
doesn't really matter. (This takes a little work to prove or even to state precisely, but if 
you work through a few examples, it becomes reasonably evident.)  

7.2.2 Backward Chaining  
Putting all the above together, we formulate the following non-deterministic algorithm 
for resolution in Horn theories. This is known as backward chaining.  
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bc(in P0 : negated goal; 
      GAMMA : set of facts and rules;) 
{ if P0 = null then succeed; 
  pick a literal L in P0; 
  choose a clause C in GAMMA whose head resolves with L; 
  P := resolve(P0,GAMMA); 
  bc(P,GAMMA) 
} 

If bc(~Phi,Gamma) succeeds, then Phi is a consequence of Gamma; if it fails, then Phi is 
not a consequence of Gamma.  

Moreover: Suppose that Phi contains existentially quantified variables. As remarked 
above, when ~Phi is Skolemized, these become free variables. If you keep track of the 
successive bindings through the successful path of resolution, then the final bindings of 
these variables gives you a value for these variables; all proofs in Horn theories are 
constructive (assuming that function symbols in Gamma are constructive.) Thus the 
attempt to prove a statement like "exists(X,Y) p(X,Y)^q(X,Y)" can be interpreted as " 
Find X and Y such that p(X,Y) and q(X,Y)."  

The succcessive negated goals Pi can be viewed as negations of subgoals of Phi. Thus, 
the operation of resolving ~P against C to get ~Q can be interpreted, "One way to prove P 
would be to prove Q and then use C to infer P". For instance, suppose P is 
"mortal(socrates)," C is "man(X) => mortal(X)" and Q is "man(socrates)." Then the step 
of resolving ~P against C to get ~Q can be viewed as, "One way to prove 
mortal(socrates) would to prove man(socrates) and then combine that with C."  

Propositional Horn theories can be decided in polynomial time. First-order Horn theories 
are only semi-decidable, but in practice, resolution over Horn theories runs much more 
efficiently than resolution over general first-order theories, because of the much restricted 
search space used in the above algorithm.  

Backward chaining is complete for Horn clauses. If Phi is a consequence of Gamma, then 
there is a backward-chaining proof of Phi from Gamma.  

7.2.3 Pure Prolog  
We are now ready to deal with (pure) Prolog, the major Logic Programming Language. It 
is obtained from a variation of the backward chaining algorithm that allows Horn clauses 
with the following rules and conventions:  

• The Selection Rule is to select the leftmost literals in the goal.  
• The Search Rule is to consider the clauses in the order they appear in the current 

list of clauses, from top to bottom.  
• Negation as Failure, that is, Prolog assumes that a literal L is proven if if it is 

unable to prove (NOT L)  
• Terms can be set equal to variables but not in general to other terms. For example, 

we can say that x=A and x=F(B) but we cannot say that A=F(B).  
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• Resolvents are added to the bottom of the list of available clauses.  

These rules make for very rapid processing. Unfortunately:  
 
The Pure Prolog Inference Procedure is Sound but not Complete 

 
This can be seen by example. Given  

• P(A,B)  
• P(C,B)  
• P(y,x) < = P(x,y)  
• P(x,z) < = P(x,y),P(y,z)  

we are unable to derive in Prolog that P(A,C) because we get caught in an ever deepening 
depth-first search.  

A Prolog "program" is a knowledge base Gamma. The program is invoked by posing a 
query Phi. The value returned is the bindings of the variables in Phi, if the query 
succeeds, or failure. The interpreter returns one answer at a time; the user has the option 
to request it to continue and to return further answers.  

The derivation mechanism of Pure Prolog has a very simple form that can be described 
by the following flow chart. 

 

Interpreter for Pure Prolog 
Notational conventions:  

•  i: used to index literals in a goal  
•  Ki: indexes the clauses in the given program (i.e. set of clauses) P  
•  Max: the number of clauses in P  
•  h(G): the first literal of the goal G  
•  t(G): the rest of goal G, i.e. G without its first literal  
•  clause(Ki): the kith clause of the program  
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    START 
      | 
      v 
   i  := O; Gi :=G; Ki := 0; 
      | 
      v  No 
      +------------------------>Gi = {}? ------------------>+ 
      ^      |       | 
      |      |Yes       | 
      |      v       | 
 Gi+1 := (t(C),t(Gi)).Si;   OUTPUT ANSWER      | 
    i := i+1;     |       | 
   Ki := 0;     v      No      | 
      ^    +----->i = 0?--------> i := i-1    | 
      |    ^   |               |     | 
      |    |   | Yes           |     | 
      |    |   v               |     | 
      |    | END               |     | 
      |                  | Yes     v     | 
      |    +<-----Ki=Max? <---------+     | 
      |                         ^    |       | 
      |    |    v No      v 
     Si = FAIL?---------------->+    +------------------>Ki := Ki + 1; 
        ^          | 
        |          v 
 +<--------------- C := COPY(Clause(Ki)); <----------+ 
     Si := MGU(h(Gi), h(C)); 

 
7.2.3.1 Real Prolog 
Real Prolog systems differ from pure Prolog for a number of reasons. Many of which 
have to do with the ability in Prolog to modify the control (search) strategy so as to 
achieve efficient programs. In fact there is a dictum due to Kowalski: 
  

Logic + Control = Algorithm 
 
But the reason that is important to us now is that Prolog uses a Unification procedure 
which does not enforce the Occur Test. This has an unfortunate consequence that, while 
Prolog may give origin to efficient programs, but 

 
Prolog is not Sound 

Actual Prolog differs from pure Prolog in three major respects:  

• There are additional functionalities besides theorem proving, such as functions to 
assert statements, functions to do arithmetic, functions to do I/O.  

• The "cut" operator allows the user to prune branches of the search tree.  
• The unification routine is not quite correct, in that it does not check for circular 

bindings e.g. X -> Y, Y -> f(X).)  
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Notation: The clause "~p V ~q V r" is written in Prolog in the form "r :- p,q."  

Example: Let Gamma be the following knowledge base:  

  
1. ancestor(X,X). 
2. ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z). 
3. parent(george,sam). 
4. parent(george,andy). 
5. parent(andy,mary). 
6. male(george). 
7. male(sam). 
8. male(andy). 
9. female(mary). 

Let Phi be the query "exists(Q) ancestor(george,Q) ^ female(Q)." (i.e. find a female 
descendant of george.) Then the Skolemization of Phi is "~ancestor(george,Q) V 
~female(Q)." A Prolog search proceeds as follows: (The indentation indicates the subgoal 
structure. Note that the variables in clauses in Gamma are renamed each time.)  

G0:  ~ancestor(george,Q) V ~female(Q).   Resolve with 1: Q=X1=george. 
  G1: ~female(george)                   Fail. Return to G0. 
G0:  ~ancestor(george,Q) V ~female(Q).   Resolve with 2: X2=george. 
Z2=Q. 
  G2:  ~parent(george,Y2) V ~ancestor(Y2,Q) V ~female(Q).    
                                         Resolve with 3: Y2=sam.  
    G3: ~ancestor(sam,Q) V ~female(Q).   Resolve with 1: Q=X3=sam.  
       G4: ~female(sam).                 Fail. Return to G3.  
    G3: ~ancestor(sam,Q) V ~female(Q).   Resolve with 2: X4=sam, Z4=Q 
       G5: ~parent(sam,Y2) V ~ancestor(Y2,Q) V ~female(Q).    
                                         Fail. Return to G3. 
    G3: ~ancestor(sam,Q) V ~female(Q).   Fail. Return to G2. 
  G2: ~parent(george,Y2) V ~ancestor(Y2,Q) V ~female(Q).    
                                         Resolve with 4: Y2=andy.  
    G6: ~ancestor(andy,Q) V ~female(Q).  Resolve with 1: X5=Q=andy 
       G7: ~female(andy).                Fail. Return to G6. 
    G6: ~parent(andy,Y6) V ~ancestor(Y6,Q) V ~female(Q).   
                                         Resolve with 5: Y6=mary. 
       G8: ~ancestor(mary,Q) V ~female(mary). Resolve with 1: 
X7=Q=mary. 
          G9: ~female(mary)              Resolve with 9. 
             Null. 
Return the binding Q=mary.  
 
7.2.4 Forward chaining  
An alternative mode of inference in Horn clauses is forward chaining . In forward 
chaining, one of the resolvents in every resolution is a fact. (Forward chaining is also 
known as "unit resolution.")  
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Forward chaining is generally thought of as taking place in a dynamic knowledge base, 
where facts are gradually added to the knowledge base Gamma. In that case, forward 
chaining can be implemented in the following routines.  

procedure add_fact(in F; in out GAMMA)  
   /* adds fact F to knowledge base GAMMA and forward chains */ 
if F is not in GAMMA then { 
   GAMMA := GAMMA union {F}; 
   for each rule R in GAMMA do { 
      let ~L be the first negative literal in R; 
      if L unifies with F then 
       then { resolve R with F to get C; 
              if C is a fact then add_fact(C,GAMMA) 
              else /* C is a rule */ add_rule(C,GAMMA) 
            } 
      } 
   } 
end add_fact. 
 
procedure add_rule(in R; in out GAMMA)  
   /* adds rule R to knowledge base GAMMA and forward chains */ 
if R is not in GAMMA then { 
   GAMMA := GAMMA union {R}; 
   let ~L be the first negative literal in R; 
   for each fact F in GAMMA do  
     if L unifies with F  
       then { resolve R with F to get C; 
              if C is a fact then add_fact(C,GAMMA) 
              else /* C is a rule */ add_rule(C,GAMMA) 
            } 
   } 
end add_fact. 
 
procedure answer_query(in Q, GAMMA) return boolean /* Success or 
failure */ 
{ QQ := {Q} /* A queue of queries 
  while QQ is non-empty do { 
      Q1 := pop(QQ); 
      L1 := the first literal in Q1; 
      for each fact F in GAMMA do  
        if F unifies with L 
          then { resolve F with Q1 to get Q2; 
                 if Q2=null then return(true) 
                            else add Q2 to QQ; 
               } 
      } 
  return(false) 

The forward chaining algorithm may not terminate if GAMMA contains recursive rules.  

Forward chaining is complete for Horn clauses; if Phi is a consequence of Gamma, then 
there is a forward chaining proof of Phi from Gamma. To be sure of finding it if Gamma 
contains recursive rules, you have to modify the above routines to use an exhaustive 
search technique, such as a breadth-first search.  
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In a forward chaining system the facts in the system are represented in a working memory 
which is continually updated. Rules in the system represent possible actions to take when 
specified conditions hold on items in the working memory - they are sometimes called 
condition-action rules. The conditions are usually patterns that must match items in the 
working memory, while the actions usually involve adding or deleting items from the 
working memory.  

The interpreter controls the application of the rules, given the working memory, thus 
controlling the system's activity. It is based on a cycle of activity sometimes known as a 
recognise-act cycle. The system first checks to find all the rules whose conditions hold, 
given the current state of working memory. It then selects one and performs the actions in 
the action part of the rule. (The selection of a rule to fire is based on fixed strategies, 
known as conflict resolution strategies.) The actions will result in a new working 
memory, and the cycle begins again. This cycle will be repeated until either no rules fire, 
or some specified goal state is satisfied.  

Conflict Resolution Strategies 
A number of conflict resolution strategies are typically used to decide which rule to fire. 
These include:  

• Don't fire a rule twice on the same data. 
• Fire rules on more recent working memory elements before older ones. This 

allows the system to follow through a single chain of reasoning, rather than 
keeping on drawing new conclusions from old data.  

• Fire rules with more specific preconditions before ones with more general 
preconditions. This allows us to deal with non-standard cases. If, for example, we 
have a rule ``IF (bird X) THEN ADD (flies X)'' and another rule ``IF (bird X) 
AND (penguin X) THEN ADD (swims X)'' and a penguin called tweety, then we 
would fire the second rule first and start to draw conclusions from the fact that 
tweety swims.  

These strategies may help in getting reasonable behavior from a forward chaining system, 
but the most important thing is how we write the rules. They should be carefully 
constructed, with the preconditions specifying as precisely as possible when different 
rules should fire. Otherwise we will have little idea or control of what will happen. 
Sometimes special working memory elements are used to help to control the behavior of 
the system. For example, we might decide that there are certain basic stages of processing 
in doing some task, and certain rules should only be fired at a given stage - we could have 
a special working memory element (stage 1) and add (stage 1) to the preconditions 
of all the relevant rules, removing the working memory element when that stage was 
complete.  
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Choice between forward and backward chaining  
Forward chaining is often preferable in cases where there are many rules with the same 
conclusions. A well-known category of such rule systems are taxonomic hierarchies. E.g. 
the taxonomy of the animal kingdom includes such rules as:  
 
animal(X) :- sponge(X). 
animal(X) :- arthopod(X). 
animal(X) :- vertebrate(X). 
... 
vertebrate(X) :- fish(X). 
vertebrate(X) :- mammal(X) 
... 
mammal(X) :- carnivore(X) 
... 
carnivore(X) :- dog(X). 
carnivore(X) :- cat(X). 
... 
(I have skipped family and genus in the hierarchy.)  

Now, suppose we have such a knowledge base of rules, we add the fact "dog(fido)" and 
we query whether "animal(fido)". In forward chaining, we will successively add 
"carnivore(fido)", "mammal(fido)", "vertebrate(fido)", and "animal(fido)". The query will 
then succeed immediately. The total work is proportional to the height of the hierarchy. 
By contast, if you use backward chaining, the query "~animal(fido)" will unify with the 
first rule above, and generate the subquery "~sponge(fido)", which will initiate a search 
for Fido through all the subdivisions of sponges, and so on. Ultimately, it searches the 
entire taxonomy of animals looking for Fido.  

In some cases, it is desirable to combine forward and backward chaining. For example, 
suppose we augment the above animal with features of these various categories:  

breathes(X) :- animal(X). 
... 
backbone(X) :- vertebrate(X). 
has(X,brain) :- vertebrate(X). 
... 
furry(X) :- mammal(X). 
warm_blooded(X) :- mammal(X). 
... 
If all these rules are implemented as forward chaining, then as soon as we state that Fido 
is a dog, we have to add all his known properties to Gamma; that he breathes, is warm-
blooded, has a liver and kidney, and so on. The solution is to mark these property rules as 
backward chaining and mark the hierarchy rules as forward chaining. You then 
implement the knowledge base with both the forward chaining algorithm, restricted to 
rules marked as forward chaining, and backward chaining rules, restricted to rules 
marked as backward chaining. However, it is hard to guarantee that such a mixed 
inference system will be complete.  
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AND/OR Trees 
We will next show the use of AND/OR trees for inferencing in Horn clause systems. The 
problem is, given a set of axioms in Horn clause form and a goal, show that the goal can 
be proven from the axioms.  

An AND/OR tree is a tree whose internal nodes are labeled either "AND" or "OR". A 
valuation of an AND/OR tree is an assignment of "TRUE" or "FALSE" to each of the 
leaves. Given a tree T and a valuation over the leaves of T, the values of the internal 
nodes and of T are defined recursively in the obvious way:  

• An OR node is TRUE if at least one of its children is TRUE.  
• An AND node is TRUE if all of its children are TRUE.  

The above is an unconstrained AND/OR tree. Also common are constrained AND/OR 
trees, in which the leaves labeled "TRUE" must satisfy some kind of constraint. A 
solution to a constrained AND/OR tree is a valuation that satisfies the constraint and 
gives the tree the value "TRUE".  

An OR node is a goal to be proven. A goal G has one downward arc for each rule R 
whose head resolves with G. This leads to an AND node. The children in the AND node 
are the literals in the tail of R. Thus, a rule is satisfied if all its subgoals are satisfied (the 
AND node); a goal is satisfied if it is established by one of its rules (the OR node). The 
leaves are unit clauses, with no tail, labeled TRUE, and subgoals with no matching rules, 
labeled FALSE . The constraint is that the variable bindings must be consistent. The 
figure below show the AND/OR tree corresponding to the following Prolog rule set with 
the goal "common_ancestor(Z,edward,mary)"  

Axioms:  
 
/* Z is a common ancestor of X and Y */ 
R1: common_ancestor(Z,X,Y) :- ancestor(Z,X), ancestor(Z,Y). 
 
/* Usual recursive definition of ancestor, going upward. */ 
R2: ancestor(A,A). 
R3: ancestor(A,C) :- parent(B,C), ancestor(A,B). 
 
/* Mini family tree */ 
R4: parent(catherine,mary). 
R5: parent(henry,mary). 
R6: parent(jane,edward). 
R7: parent(henry,edward). 
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