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6.2.8 Resolution 
We have introduced the inference rule Modus Ponens. Now we introduce another 
inference rule that is particularly significant, Resolution. 
 
Since it is not trivial to understand, we proceed in two steps. First we introduce 
Resolution in the Propositional Calculus, that is, in a language with only truth valued 
variables. Then we generalize to First Order Logic.  
 
6.2.8.1 Resolution in the Propositional Calculus 
In its simplest form Resolution is the inference rule:  
  {A OR C, B OR (NOT C)} 
  ---------------------- 
   A OR B 
More in general the Resolution Inference Rule is:  

• Given as premises the clauses C1 and C2, where C1 contains the literal L and C2 
contains the literal (NOT L), infer the clause C, called the Resolvent of C1 and 
C2, where C is the union of (C1 - {L}) and (C2 -{(NOT L)})  

 
 
In symbols:  
     {C1, C2} 
 --------------------------------- 
 (C1 - {L}) UNION (C2 - {(NOT L)}) 

 
Example: 
The following set of clauses is inconsistent:  
1. (P OR (NOT Q)) 
2. ((NOT P) OR (NOT S)) 
3. (S OR (NOT Q)) 
4. Q 
In fact:  
5. ((NOT Q) OR (NOT S))        from 1. and 2. 
6. (NOT Q)    from 3. and 5. 
7. FALSE    from 4. and 6. 
Notice that 7. is really the empty clause [why?].  
 
Theorem: The Propositional Calculus with the Resolution Inference Rule is sound 

and Refutation Complete. 
 
NOTE: This theorem requires that clauses be represented as sets, that is, that each 
element of the clause appear exactly once in the clause. This requires some form of 
membership test when elements are added to a clause.  
 

C1 = {P P}  
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C2 = {(NOT P) (NOT P)}  
C = {P (NOT P)}  

 
From now on by resolution we just get again C1, or C2, or C.  
 
6.2.8.2 Resolution in First Order Logic 
Given clauses C1 and C2, a clause C is a RESOLVENT of C1 and C2, if  

1. There is a subset C1' = {A1, .., Am} of C1 of literals of the same sign, say 
positive, and a subset C2' = {B1, .., Bn} of C2 of literals of the opposite sign, say 
negative,  

2. There are substitutions s1 and s2 that replace variables in C1' and C2' so as to 
have new variables,  

3. C2'' is obtained from C2 removing the negative signs from B1 .. Bn  
4. There is an Most General Unifier s for the union of C1'.s1 and C2''.s2  

and C is  
((C1 - C1').s1 UNION (C2 - C2').s2).s 

 
 
In symbols this Resolution inference rule becomes:  
 {C1, C2} 
 -------- 
    C 
If C1' and C2' are singletons (i.e. contain just one literal), the rule is called Binary 
Resolution.  
 

Example: 
C1 = {(P z (F z)) (P z A)}  
C2 = {(NOT (P z A)) (NOT (P z x)) (NOT (P x z))  
C1' = {(P z A)}  
C2' = {(NOT (P z A)) (NOT (P z x))}  
C2'' = {(P z A) (P z x)}  
s1 = [z1/z]  
s2 = [z2/z]  
C1'.s1 UNION C2'.s2 = {(P z1 A) (P z2 A) (P z2 x)}  
s = [z1/z2 A/x]  
C = {(NOT (P A z1)) (P z1 (F z1))}  
 

Notice that this application of Resolution has eliminated more than one literal from C2, 
i.e. it is not a binary resolution.  

 
Theorem: First Order Logic, with the Resolution Inference Rule, is sound and 

refutation complete. 
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We will not develop the proof of this theorem. We will instead look at some of its steps, 
which will give us a wonderful opportunity to revisit Herbrand. But before that let's 
observe that in a sense, if we replace in this theorem "Resolution" by "Binary 
Resolution", then the theorem does not hold and Binary Resolution is not Refutation 
Complete. This is the case when in the implementation we do not use sets but instead use 
bags.This can be shown using the same example as in the case of propositional logic.  

Given a clause C, a subset D of C, and a substitution s that unifies D, we define C.s to be 
a Factor of C. 
The Factoring Inference Rule is the rule with premise C and as consequence C.s.  

Theorem: For any set of clauses S and clause C, if C is derivable from S using 
Resolution, then C is derivable from S using Binary Resolution and Factoring. 

 
When doing proofs it is efficient to have as few clauses as possible. The following 
definition and rule are helpful in eliminating redundant clauses:  

A clause C1 Subsumes a clause C2 iff there is a substitution s such that C1.s is a 
subset of C2.  
Subsumption Elimination Rule: If C1 subsumes C2 then eliminate C2.  

 
Herbrand Revisited 
We have presented the concept of Herbrand Universe HS for a set of clauses S. Here we 
meet the concept of Herbrand Base, H(S), for a set of clauses S. 
H(S) is obtained from S by considering the ground instances of the clauses of S under all 
the substitutions that map all the variables of S into elements of the Herbrand universe of 
S. Clearly, if in S occurs some variable and the Herbrand universe of S is infinite then 
H(S) is infinite. 
[NOTE: Viceversa, if S has no variables, or S has variables and possibly individual 
constants, but no other function symbol, then H(S) is finite. If H(S) is finite then we can, 
as we will see, decide if S is or not satisfiable.] 
[NOTE: it is easy to determine if a finite subset of H(S) is satisfiable: since it consists of 
ground clauses, the truth table method works now as in propositional cases.]  

The importance of the concepts of Herbrand Universe and of Herbrand Base is due to the 
following theorems:  

Herbrand Theorem: If a set S of clauses is unsatisfiable then there is a finite subset 
of H(S) that is also unsatisfiable. 

 
Because of the theorem, when H(S) is finite we will be able to decide is S is or not 
satisfiable. Herbrand theorem immediately suggests a general refutation complete proof 
procedure:  

given a set of clauses S, enumerate subsets of H(S) until you find one that is 
unsatisfiable.  
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But, as we shall soon see, we can come up with a better refutation complete proof 
procedure.  
 
Refutation Completeness of the Resolution Proof Procedure 
Given a set of clauses S, the Resolution Closure of S, R(S), is the smallest set of clauses 
that contains S and is closed under Resolution. In other words, it is the set of clauses 
obtained from S by applying repeatedly resolution.  

 
Ground Resolution Theorem: If S is an unsatisfiable set of ground clauses, then 

R(S) contains the clause FALSE. 
 
In other words, there is a resolution deduction of FALSE from S.  

 
Lifting Lemma: Given clauses C1 and C2 that have no variables in common, and 

ground instances C1' and C2', respectively, of C1 and C2, if C' is a resolvent of 
C1' and C2', then there is a clause C which is a resolvent of C1 and C2 which 
has C' as a ground instance 

 
With this we have our result, that the Resolution Proof procedure is Refutation Complete. 
Note the crucial role played by the Herbrand Universe and Basis. Unsatisfiability of S is 
reduced to unsatisfiability for a finite subset HS(S) of H(S), which in turn is reduced to 
the problem of finding a resolution derivation for FALSE in HS(S), derivation which can 
be "lifted" to a resolution proof of FALSE from S.  
 
Dealing with Equality 
 
Up to now we have not dealt with equality, that is, the ability to recognize terms as being 
equivalent (i.e. always denoting the same individual) on the basis of some equational 
information. For example, given the information that  

S(x) = x+1 
then we can unify:  

F(S(x) y) and F(x+1, 3). 
 
There are two basic approaches to dealing with this problem.  

• The first is to add inference rules to help us replace terms by equal terms. One 
such rule is the Demodulation Rule: Given terms t1, t2, and t3 where t1 and t2 
are unifiable with MGU s, and t2 occurs in a formula A, then  

 {t1 = t3, A(... t2 ...)} 
 ------------------------ 
       A(... t3.s ...) 

Another more complex, and useful, rule is Paramodulation.  
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• The second approach is not to add inference rules and instead to add non-logical 
axioms that characterize equality and its effect for each non logical symbol. 
We first establish the reflexive, symmetric and transitive properties of "=":  

 x=x 
 x=y IMPLIES y=x 
 x=y AND y=z IMPLIES x=z 

Then for each unary function symbol F we add the equality axiom  

 x=y IMPLIES F(x)=F(y) 

Then for each binary function symbol F we add the equality axiom  

 x=z AND y=w IMPLIES F(x y)=F(z w) 

And similarly for all other function symbols. 

The treatment of predicate symbols is similar. For example, for the binary 
predicate symbol P we add  

 x=z AND y=w IMPLIES ( P(x y) IFF P(z w)) 
 

Whatever approach is chosen, equality substantially complicates proofs.  
 
Answering True/False Questions 
 
If we want to show that a clause C is derivable from a set of clauses S={C1 C2 .. Cn}, we 
add to S the clauses obtained by negating C, and apply resolution to the resulting set S' of 
clauses until we get the clause FALSE.  
 
Example: 
 
We are back in the Block World with the following state  
 +--+ 
 |C | 
 +--+    +--+ 
 |A |    |B | 
    ----+--+----+--+------- 
which gives us the following State Clauses:  

• ON(C A)  
• ONTABLE(A)  
• ONTABLE(B)  
• CLEAR(C)  
• CLEAR(B)  

In addition we consider the non-logical axiom:  
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• (ALL x (CLEAR(x) IMPLIES (NOT (EXISTS y ON( y x)))))  

which in clause form becomes  

• NOT CLEAR(x) OR NOT ON(y x)  

If we now ask whether (NOT (EXISTS y (ON(y C)))), we add to the clauses considered 
above the clause ON(F C) and apply resolution:  
 
  {NOT CLEAR(x) OR NOT ON(y x)} {ON(F C)} {CLEAR(C)} 
   \        /          / 
     \      /          / 
     \    /          / 
   {NOT CLEAR(C)}   / 
       \    / 
        \  / 
         \/ 
         {} 

 
Example: 
 
We are given the following predicates:  

• S(x) : x is Satisfied  
• H(x) : x is Healthy  
• R(x) : x is Rich  
• P(x) : x is Philosophical  

The premises are the non-logical axioms:  

• S(x) IMPLIES (H(x) AND R(x))  
• EXISTS x (S(x) and P(x))  

The conclusion is  

• EXISTS x (P(x) AND R(x))  

The corresponding clauses are:  

1. NOT S(x) OR H(x)  
2. NOT S(x) OR R(x)  
3. S(B)  
4. P(B)  
5. NOT P(x) OR NOT R(x)  

where B is a Skolem constant.  

 

Version 1 CSE IIT, Kharagpur 
 



The proof is then:  

  NOT P(x) OR NOT R(x)    P(B)    NOT S(x) OR R(x)    S(B) 
                 \        /                  \        / 
                  \      /                    \      / 
                   NOT R(B)                     R(B) 
                           \                   / 
                            \                 / 
                             \               / 
                              \             / 
                               \           / 
                                \         / 
                                     {} 
 
Answering Fill-in-Blanks Questions 
 
We now determine how we can identify individual(s) that satisfy specific formulae.  
 
EXAMPLE: 
 
NON-LOGICAL SYMBOLS:  

• SW(x y): x is staying with y  
• A(x y): x is at place y  
• R(x y): x can be reached at phone number y  
• PH(x): the phone number for place x  
• Sally, Morton, UnionBldg: Individuals  

NON-LOGICAL AXIOMS:  

1. SW(Sally Morton)  
2. A(Morton UnionBlidg)  
3. SW(x y) AND A(y z) IMPLIES A(x z),  

which is equivalent to the clause  
1. NOT SW(x y) OR NOT A(y z) OR A(x z)  

4. A(x y) IMPLIES R(x PH(y)), which is equivalent to the clause  
1. NOT A(u v) OR R(u PH(v))  

GOAL: Determine where to call Sally  

• NOT EXISTS x R(Sally x), which is equivalent to the clause  
1. NOT R(Sally w).  

To this clause we add as a disjunct the literal, Answer Literal, Ans(w) to obtain 
the clause :  

5. Ans(w) OR NOT R(Sally w).  
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PROOF  
6. Ans(v) OR NOT A(Sally v). from 4. and 5.  
7. Ans(v) OR NOT SW(Sally y) OR NOT A(y v), from 6. and 3.  
8. Ans(v) OR NOT A(Morton v), from 7. and 1.  
9. Ans(UnionBldg), from 8. and 2.  
 

The proof procedure terminates when we get a clause that is an instance of the Answer 
Literal. 9. and gives us the place where we can call Sally.  
 
General Method 
If A is the Fill-In-Blanks question that we need to answer and x1 .. xn are the free 
variables occurring in A, then we add to the Non-Logical axioms and Facts GAMMA the 
clause  

NOT A OR ANS(x1 .. xn)  
 

We terminate the proof when we get a clause of the form  
ANS(t1 .. tn)  

t1 .. tn are terms that denote individuals that simultaneously satisfy the query for, 
respectively x1 .. xn. 
 
We can obtain all the individuals that satisfy the original query by continuing the proof 
looking for alternative instantiations for the variables x1 .. xn.  

If we build the proof tree for ANS(t1 .. tn) and consider the MGUs used in it, the 
composition of these substitutions, restricted to x1 .. xn, gives us the individuals that 
answer the original Fill-In-Blanks question.  
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