

Module
2

Problem Solving

using Search-
(Single agent search)

Version 1 CSE IIT, Kharagpur

Lesson
5

Informed Search

Strategies-I

Version 1 CSE IIT, Kharagpur

3.1 Introduction

We have outlined the different types of search strategies. In the earlier chapter we have
looked at different blind search strategies. Uninformed search methods lack problem-
specific knowledge. Such methods are prohibitively inefficient in many cases. Using
problem-specific knowledge can dramatically improve the search speed. In this chapter
we will study some informed search algorithms that use problem specific heuristics.

Review of different Search Strategies
1. Blind Search

a) Depth first search
b) Breadth first search
c) Iterative deepening search
d) Bidirectional search

2. Informed Search

3.1.1 Graph Search Algorithm

We begin by outlining the general graph search algorithm below.

 Graph search algorithm
Let fringe be a list containing the initial state
Let closed be initially empty
Loop
 if fringe is empty return failure
 Node remove-first (fringe)
 if Node is a goal
 then return the path from initial state to Node
 else put Node in closed
 generate all successors of Node S
 for all nodes m in S
 if m is not in fringe or closed
 merge m into fringe
End Loop

3.1.2 Review of Uniform-Cost Search (UCS)

We will now review a variation of breadth first search we considered before, namely
Uniform cost search.

To review, in uniform cost search we enqueue nodes by path cost.

Let g(n) = cost of the path from the start node to the current node n.

Version 1 CSE IIT, Kharagpur

The algorithm sorts nodes by increasing value of g, and expands the lowest cost node of
the fringe.

Properties of Uniform Cost Search

• Complete
• Optimal/Admissible
• Exponential time and space complexity, O(bd)

The UCS algorithm uses the value of g(n) to select the order of node expansion. We will
now introduce informed search or heuristic search that uses problem specific heuristic
information. The heuristic will be used to select the order of node expansion.

3.1.3 Informed Search

We have seen that uninformed search methods that systematically explore the state space
and find the goal. They are inefficient in most cases. Informed search methods use
problem specific knowledge, and may be more efficient. At the heart of such algorithms
there is the concept of a heuristic function.

3.1.3.1 Heuristics

Heuristic means “rule of thumb”. To quote Judea Pearl, “Heuristics are criteria, methods
or principles for deciding which among several alternative courses of action promises to
be the most effective in order to achieve some goal”. In heuristic search or informed
search, heuristics are used to identify the most promising search path.

Example of Heuristic Function

A heuristic function at a node n is an estimate of the optimum cost from the current node
to a goal. It is denoted by h(n).
h(n) = estimated cost of the cheapest path from node n to a goal node

Example 1: We want a path from Kolkata to Guwahati
Heuristic for Guwahati may be straight-line distance between Kolkata and Guwahati
h(Kolkata) = euclideanDistance(Kolkata, Guwahati)

Example 2: 8-puzzle: Misplaced Tiles Heuristics is the number of tiles out of place.

 Initial State Goal state

1 2 3

8 4

7 6 5

2 8 3

1 6 4

 7 5

Figure 1: 8 puzzle

Version 1 CSE IIT, Kharagpur

The first picture shows the current state n, and the second picture the goal state.
h(n) = 5
because the tiles 2, 8, 1, 6 and 7 are out of place.

Manhattan Distance Heuristic: Another heuristic for 8-puzzle is the Manhattan distance
heuristic. This heuristic sums the distance that the tiles are out of place. The distance of a
tile is measured by the sum of the differences in the x-positions and the y-positions.
For the above example, using the Manhattan distance heuristic,
h(n) = 1 + 1 + 0 + 0 + 0 + 1 + 1 + 2 = 6

We will now study a heuristic search algorithm best-first search.

3.2 Best First Search

Uniform Cost Search is a special case of the best first search algorithm. The algorithm
maintains a priority queue of nodes to be explored. A cost function f(n) is applied to each
node. The nodes are put in OPEN in the order of their f values. Nodes with smaller f(n)
values are expanded earlier. The generic best first search algorithm is outlined below.

Best First Search
Let fringe be a priority queue containing the initial state
Loop
 if fringe is empty return failure
 Node remove-first (fringe)
 if Node is a goal
 then return the path from initial state to Node
 else generate all successors of Node, and
 put the newly generated nodes into fringe
 according to their f values
End Loop

We will now consider different ways of defining the function f. This leads to different
search algorithms.

3.2.1 Greedy Search

In greedy search, the idea is to expand the node with the smallest estimated cost to reach
the goal.
We use a heuristic function
f(n) = h(n)
h(n) estimates the distance remaining to a goal.
Greedy algorithms often perform very well. They tend to find good solutions quickly,
although not always optimal ones.

Version 1 CSE IIT, Kharagpur

The resulting algorithm is not optimal. The algorithm is also incomplete, and it may fail
to find a solution even if one exists. This can be seen by running greedy search on the
following example. A good heuristic for the route-finding problem would be straight-line
distance to the goal.

Figure 2 is an example of a route finding problem. S is the starting state, G is the goal
state.

Figure 2

Figure 3

Version 1 CSE IIT, Kharagpur

Let us run the greedy search algorithm for the graph given in Figure 2. The straight line
distance heuristic estimates for the nodes are shown in Figure 3.

S

Step 1: S is expanded. Its children are A and D.

S

A D
10.4 8.9

S

A D
10.4 8.9

Step 2: D has smaller cost and is expanded next.

S

A D
10.4 8.9

A E
10.4 6.9

S

A D
10.4 8.9

A E
10.4 6.9

S

A D
10.4 8.9

A E
10.4 6.9

B F
6.7 3.0

S

A D
10.4 8.9

A E
10.4 6.9

B F
6.7 3.0

Version 1 CSE IIT, Kharagpur

S

A D
10.4 8.9

A E
10.4 6.9

B F
6.7 3.0

G
0

S

A D
10.4 8.9

A E
10.4 6.9

B F
6.7 3.0

G
0

8 10

12

6
10

70

9

12

15

B
C

D

E
F

G

H

7

Start

Goal

8 10

12

6
10

70

9

12

15

B
C

D

E
F

G

H

7

Start

Goal

Figure 4

Greedy Best-First Search illustrated
We will run greedy best first search on the problem in Figure 2. We use the straight line
heuristic. h(n) is taken to be the straight line distance from n to the goal position.

Version 1 CSE IIT, Kharagpur

The nodes will be expanded in the following order:
A

Clearly this is not an optimum path. The path A-B-C-F-H has a cost of 39.

3.2.2 A* Search

is algorithm was given by Hart,

 algorithm with

 n to goal

ce so far + estimated distance remaining

imates the cost of any solution that can be
 solution path from n to a goal node,

nd if h is admissible,

al solution.

B
E
G
H

The path obtained is A-B-E-G-H and its cost is 99

We will next consider the famous A* algorithm. Th
Nilsson & Rafael in 1968.

A* is a best first search
f(n) = g(n) + h(n)
where
g(n) = sum of edge costs from start to n

(n) = estimate of lowest cost path fromh

f(n) = actual distan

h(n) is said to be admissible if it underest
reached from n. If C*(n) is the cost of the cheapest
a
h(n) <= C*(n).

e can prove that if h(n) is admissible, then the search will find an optimW

The algorithm A* is outlined below:

Algorithm A*
OPEN = nodes on frontier. CLOSED = expanded nodes.
OPEN = {<s, nil>}

 remove from OPEN the node <n,p> with minimum f(n)
 on CLOSED

g n & m with cost c

 and {p|e} is cheaper than q

while OPEN is not empty

 place <n,p>
 if n is a goal node,

ss (path p) return succe
 for each edge connectin
 if <m, q> is on CLOSED and {p|e} is cheaper than q

LOSED, then remove n from C
|e}> on OPEN put <m,{p

 else if <m,q> is on OPEN
 then replace q with {p|e}
 else if m is not on OPEN
 then put <m,{p|e}> on OPEN

Version 1 CSE IIT, Kharagpur

return failure

3.2.1 A* illustrated

8 10

12

6
10

70

9

12

15

B
C

D

E
F

G

H

7

Start

Goal

8 10

12

6
10

70

9

12

15

B
C

D

E
F

G

H

7

Start

Goal

The heuristic function used is straight line distance. The order of nodes expanded, and the
status of Fringe is shown in the following table.

Steps Fringe Node
expanded

Comments

1 A
2 B(26.6) A
3 E(27.5), C(35.1), D(35.2) B
4 C(35.1), D(35.2), C(41.2)

G(92.5)
rted as there is

another C with lower cost.
E C is not inse

5 D(35.2), F(37), G(92.5) C
6 F(37), G(92.5) D
7 H(39), G(42.5) F G is replaced with a lower

cost node
8 H G(42.5) Goal test successful.

The path returned is A-B-C-F-H.
The path cost is 39. This is an optimal path.

Version 1 CSE IIT, Kharagpur

3.2.2 A* search: properties

is means that provided a solution exists, the first
A* is admissible under the following

onditions:

 number of successors
 Every arc in the graph has a cost greater than some ε> 0

mplete under the above conditions.

A* is optim search algorithms that
expand sea timal algorithm
wil

nential in the worst case.

d

 heuristic is consistent if:

(n) <= cost(n, n') + h(n')

he heuristic shown below is inconsistent, because h(n) = 4, but
ost(n, n') + h(n') = 1 + 2 = 3, which is less than 4. This makes the value of f decrease

The algorithm A* is admissible. Th
solution found by A* is an optimal solution.
c

• In the state space graph
o Every node has a finite
o

• Heuristic function: for every node n, h(n) ≤ h*(n)

A* is also co

ally efficient for a given heuristic – of the optimal
rch paths from the root node, it can be shown that no other op

l expand fewer nodes and find a solution

However, the number of nodes searched still expo

Unfortunately, estimates are usually not good enough for A* to avoid having to expan
an exponential number of nodes to find the optimal solution. In addition, A* must keep
all nodes it is considering in memory.

A* is still much more efficient than uninformed methods.

It is always better to use a heuristic function with higher values as long as it does not
overestimate.

A

h

For example, t
c
from node n to node n':

Version 1 CSE IIT, Kharagpur

If a heuristic h is consistent, the f values along any path will be nondecreasing:

f(n') = estimated distance from start to goal through n'

 = actual distance from start to n + step cost from n to n' +
estimated distance from n' to goal

 = g(n) + cost(n, n') + h(n')
 > g(n) + h(n) because cost(n, n') + h(n') > h(n) by consistency
 = f(n)
Therefore f(n') > f(n), so f never decreases along a path.

If a heuristic h is inconsistent, we can tweak the f values so that they behave as if h were
consistent, using the pathmax equation:
f(n') = max(f(n), g(n') + h(n'))

This ensures that the f values never decrease along a path from the start to a goal.
Given nondecreasing values of f, we can think of A* as searching outward from the start
node through successive contours of nodes, where all of the nodes in a contour have the
same f value:

Version 1 CSE IIT, Kharagpur

For any contour, A* examines all of the nodes in the contour before looking at any
contours further out. If a solution exists, the goal node in the closest contour to the start
node will be found first.

We will now prove the admissibility of A*.

3.2.3 Proof of Admissibility of A*

We will show that A* is admissible if it uses a monotone heuristic.

A monotone heuristic is such that along any path the f-cost never decreases.
But if this property does not hold for a given heuristic function, we can make the f value
monotone by making use of the following trick (m is a child of n)
f(m) = max (f(n), g(m) + h(m))

o Let G be an optimal goal state
o C* is the optimal path cost.
o G2 is a suboptimal goal state: g(G2) > C*

Suppose A* has selected G2 from OPEN for expansion.

Version 1 CSE IIT, Kharagpur

S

G2
G

n

S

G2
G

n

Consider a node n on OPEN on an optimal path to G. Thus C* ≥ f(n)
Since n is not chosen for expansion over G2, f(n) ≥ f(G2)
G2 is a goal state. f(G2) = g(G2)
Hence C* ≥ g(G2).
This is a contradiction. Thus A* could not have selected G2 for expansion before
reaching the goal by an optimal path.

3.2.4 Proof of Completeness of A*

Let G be an optimal goal state.
A* cannot reach a goal state only if there are infinitely many nodes where f(n) ≤ C*.
This can only happen if either happens:

o There is a node with infinite branching factor. The first condition takes care of
this.

o There is a path with finite cost but infinitely many nodes. But we assumed that
Every arc in the graph has a cost greater than some ε> 0. Thus if there are
infinitely many nodes on a path g(n) > f*, the cost of that path will be infinite.

Lemma: A* expands nodes in increasing order of their f values.

A* is thus complete and optimal, assuming an admissible and consistent heuristic
function (or using the pathmax equation to simulate consistency).
A* is also optimally efficient, meaning that it expands only the minimal number of
nodes needed to ensure optimality and completeness.

3.2.4 Performance Analysis of A*

Model the search space by a uniform b-ary tree with a unique start state s, and a goal
state, g at a distance N from s.
The number of nodes expanded by A* is exponential in N unless the heuristic estimate is
logarithmically accurate
|h(n) – h*(n)| ≤ O (log h*(n))

Version 1 CSE IIT, Kharagpur

In practice most heuristics have proportional error.

It becomes often difficult to use A* as the OPEN queue grows very large.
A solution is to use algorithms that work with less memory.

3.2.5 Properties of Heuristics

Dominance:
h2 is said to dominate h1 iff h2(n) ≥ h1(n) for any node n.
A* will expand fewer nodes on average using h2 than h1.

Proof:

Every node for which f(n) < C* will be expanded. Thus n is expanded whenever

 h(n) < f* - g(n)

Since h2(n) ≥ h1(n) any node expanded using h2 will be expanded using h1.

3.2.6 Using multiple heuristics

Suppose you have identified a number of non-overestimating heuristics for a problem:
h1(n), h2(n), … , hk(n)

Then
 max (h1(n), h2(n), … , hk(n))
is a more powerful non-overestimating heuristic. This follows from the property of
dominance

Version 1 CSE IIT, Kharagpur

	Problem Solvingusing Search-(Single agent search)
	Informed Search Strategies-I
	Introduction
	Graph Search Algorithm
	Review of Uniform-Cost Search (UCS)
	Informed Search
	Heuristics
	Example of Heuristic Function

	Best First Search
	Greedy Search
	A* Search
	A* Illustrated
	A* search: properties
	Proof of Admissibility of A*
	Proof of Completeness of A*
	Performance Analysis of A*
	Properties of Heuristics
	Using multiple heuristics

