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10.5 Bayesian Networks 
 
10.5.1 Representation and Syntax 
Bayes nets (BN) (also referred to as Probabilistic Graphical Models and Bayesian Belief 
Networks) are directed acyclic graphs (DAGs) where each node represents a random 
variable. The intuitive meaning of an arrow from a parent to a child is that the parent 
directly influences the child. These influences are quantified by conditional probabilities. 
 
BNs are graphical representations of joint distributions. The BN for the medical expert 
system mentioned previously represents a joint distribution over 8 binary random 
variables {A,T,E,L,S,B,D,X}. 
 

 
 
Conditional Probability Tables 
 
Each node in a Bayesian net has an associated conditional probability table or CPT. 
(Assume all random variables have only a finite number of possible values). This gives 
the probability values for the random variable at the node conditional on values for its 
parents. Here is a part of one of the CPTs from the medical expert system network. 
 

 
If a node has no parents, then the CPT reduces to a table giving the marginal distribution 
on that random variable.  
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Consider another example, in which all nodes are binary, i.e., have two possible values, 
which we will denote by T (true) and F (false). 

 
We see that the event "grass is wet" (W=true) has two possible causes: either the water 
sprinker is on (S=true) or it is raining (R=true). The strength of this relationship is shown 
in the table. For example, we see that Pr(W=true | S=true, R=false) = 0.9 (second row), 
and hence, Pr(W=false | S=true, R=false) = 1 - 0.9 = 0.1, since each row must sum to one. 
Since the C node has no parents, its CPT specifies the prior probability that it is cloudy 
(in this case, 0.5). (Think of C as representing the season: if it is a cloudy season, it is less 
likely that the sprinkler is on and more likely that the rain is on.) 
 
10.5.2 Semantics of Bayesian Networks 
The simplest conditional independence relationship encoded in a Bayesian network can 
be stated as follows: a node is independent of its ancestors given its parents, where the 
ancestor/parent relationship is with respect to some fixed topological ordering of the 
nodes.  
 
In the sprinkler example above, by the chain rule of probability, the joint probability of 
all the nodes in the graph above is  
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P(C, S, R, W) = P(C) * P(S|C) * P(R|C,S) * P(W|C,S,R)  
 
By using conditional independence relationships, we can rewrite this as  

ause R is independent of S given its 
arent C, and the last term because W is independent of C given its parents S and R. We 

 from a parent to a child is that the parent directly 
fluences the child. The direction of this influence is often taken to represent casual 

 

n into a product of conditional probabilities 
sing repeated applications of the product rule. 

ditionally independent of all 

 
P(C, S, R, W) = P(C) * P(S|C) * P(R|C) * P(W|S,R)  
 
where we were allowed to simplify the third term bec
p
can see that the conditional independence relationships allow us to represent the joint 
more compactly. Here the savings are minimal, but in general, if we had n binary nodes, 
the full joint would require O(2^n) space to represent, but the factored form would 
require O(n 2^k) space to represent, where k is the maximum fan-in of a node. And fewer 
parameters makes learning easier. 
 
The intuitive meaning of an arrow
in
influence. The conditional probabilities give the strength of causal influence. A 0 or 1 in 
a CPT represents a deterministic influence. 

10.5.2.1 Decomposing Joint Distributions 
 
A joint distribution can always be broken dow
u
 

We can order the variables however we like: 
 

 
10.5.2.2 Conditional Independence in Bayes Net 

A Bayes net represents the assumption that each node is con
its non-descendants given its parents. 
 
So for example, 
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Note that, a node is NOT independent of its descendants given its parents. Generally, 

10.

act 
tial 

nt of Y. We can always break down the joint 

 
 

5.2.3 Variable ordering in Bayes Net 

The conditional independence assumptions expressed by a Bayes net allow a comp
st note that the Bayes net imposes a parrepresentation of the joint distribution. Fir

order on nodes: X <= Y  iff X is a descenda
so that the conditional probability factor for a node only has non-descendants in the 
condition. 

Version 1 CSE IIT, Kharagpur



10.
 

 

 

ave conditional independence relations between sets of random variables. In the 

 
e need a way of checking for these conditional independence relations 

 

5.2.4 The Joint Distribution as a Product of CPTs 

Because each node is conditionally independent of all its nondescendants given its
parents, and because we can write the joint appropriately we have: 

 
So the CPTs determine the full joint distribution.  
 
n short, I

 
Bayesian Networks allow a compact representation of the probability distributions. An 
unstructured table representation of the “medical expert system” joint would require  
28 − 1 = 255 numbers. With the structure imposed by the conditional independence 
assumptions this reduces to 18 numbers. Structure also allows efficient inference — of 
which more later. 
 
10.5.2.5 Conditional Independence and d-separation in a Bayesian Network 
 
We can h
Medical Expert System Bayesian net, {X, D} is independent of {A, T, L, S} given {E,B} 
which means: 
P(X, D | E, B) = P(X,D | E, B, A, T, L, S) 
equivalently . . . 
P(X, D, A, T, L, S | E, B) = P(A, T, L, S | E, B)P(X, D | E, B) 

W
Conditional independence can be checked uing the d-separation property of the Bayes 
net directed acyclic graph. d-separation is short for direction-dependent separation. 
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If E d-separates X and Y then X and Y are conditionally independent given E. 
 

 d-separates X and Y if every undirected path from a node in X to a node inE
b

 Y is 

 

 

 

 

 

 
0.5.3 Building a Bayes Net: The Family Out? Example 

amily is at home as I approach the house. Often my wife leaves on 
ut, but also sometimes if she is expecting a guest. When nobody is 
he back yard, but he is also put there when he has bowel trouble. 

t know given what we 
ese are called hypothesis events – we 

locked given E. 

Defining d-separation: 

A path is blocked given a set of nodes E if there is a node Z on the path for which one of 
these three conditions holds: 

1. Z is in E and Z has one arrow on the path coming in and one arrow going out. 

2. Z is in E and Z has both path arrows leading out. 

3. Neither Z nor any descendant of Z is in E, and both path arrows lead in to Z. 

1
 
We start with a natural language description of the situation to be modeled: 
 
I want to know if my f
a light when she goes o
home the dog is put in t
If the dog is in the back yard, I will hear her barking, but I may be confused by other dogs 
barking. 
 
Building the Bayes net involves the following steps. 
 
We build Bayes nets to get probabilities concerning what we don’
do know. What we don’t know is not observable. Th
need to know what are the hypothesis events in a problem? 
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Recall that a Bayesian network is composed of related (random) variables, and that a 
ariable incorporates an exhaustive set of mutually exclusive events - one of its events is 

sial. Often (but not always) your intuitive notion of causality will help you. 

e neither information variables or 

e of the nodes 

odel space  

t). The normalized log-likelihood of the training set D is a sum 
 terms, one for each node:  

v
true. How shall we represent the two hypothesis events in a problem?  
 
Variables whose values are observable and which are relevant to the hypothesis events 
are called information variables. What are the information variables in a problem? 
 
In this problem we have three variables, what is the causal structure between them? 
Actually, the whole notion of ‘cause’ let alone ‘determining causal structure’ is very 
ontroverc

 
ometimes we need mediating variables which arS

hypothesis variables to represent causal structures. 
 
 

0.5.4 Learning of Bayesian Network Parameters 1
 
One needs to specify two things to describe a BN: the graph topology (structure) and the 
parameters of each CPT. It is possible to learn both of these from data. However, learning 

ructure is much harder than learning parameters. Also, learning when somst
are hidden, or we have missing data, is much harder than when everything is observed. 
This gives rise to 4 cases: 
 
  
Structure      Observability                         Method   
---------------------------------------------------------------------  

nown        Full                    Maximum Likelihood Estimation  K
Known        Partial                EM (or gradient ascent)  
Unknown    Full                    Search through model space  

nknown   Partial                 EM + search through mU
 
 

e discuss below the first case only. W
 
Known structure, full observability 
 
We assume that the goal of learning in this case is to find the values of the parameters of 
each CPT which maximizes the likelihood of the training data, which contains N cases 
assumed to be independen(

of
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We see that the log-likelihood scoring function decomposes according to the structure of 
e graph, and hence we can maximize the contribution to the log-likelihood of each node 

ters in each node are independent of the other 
odes). In cases where N is small compared to the number of parameters that require 

r to regularize the problem. In this case, we call the 
stimates Maximum A Posterori (MAP) estimates, as opposed to Maximum Likelihood 

nt the number of times the grass is wet when it is raining 
nd the sprinler is on, N(W=1,S=1,R=1), the number of times the grass is wet when it is 

raining and the sprinkler is o n these counts (which are the 
ate of the CPT as 

ollows:  

th
independently (assuming the parame
n
fitting, we can use a numerical prio
e
(ML) estimates.  
 
Consider estimating the Conditional Probability Table for the W node. If we have a set of 
training data, we can just cou
a

ff, N(W=1,S=0,R=1), etc. Give
sufficient statistics), we can find the Maximum Likelihood Estim
f
 

 
where the denominator is N(S=s,R=r) = N(W=0,S=s,R=r) + N(W=1,S=s,R=r). Thus 
"learning" just amounts to counting (in the case of multinomial distributions). For 
Gaussian nodes, we can compute the sample mean and variance, and use linear regression 
to estimate the weight matrix. For other kinds of distributions, more complex procedures 
are necessary.  
 
As is well known from the HMM literature, ML estimates of CPTs are prone to sparse 
data problems, which can be solved by using (mixtures of) Dirichlet priors (pseudo 
counts). This results in a Maximum A Posteriori (MAP) estimate. For Gaussians, we can 
use a Wishart prior, etc. 
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