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10.5.5 Inferencing in Bayesian Networks 
10.5.5.1 Exact Inference 

The basic inference problem in BNs is described as follows: 
 
Given 
 
1. A Bayesian network BN 

 
2. Evidence e - an instantiation of some of the variables in BN (e can be empty) 
 
3. A query variable Q 
 
Compute P(Q|e) - the (marginal) conditional distribution over Q 
 
Given what we do know, compute distribution over what we do not. Four categories of 
inferencing tasks are usually encountered. 

    1. Diagnostic Inferences (from effects to causes) 

Given that John calls, what is the probability of burglary? i.e. Find P(B|J) 

   2. Causal Inferences (from causes to effects) 
Given Burglary, what is the probability that  
John calls, i.e. P(J|B) 
Mary calls, i.e. P(M|B) 
3. Intercausal Inferences (between causes of a common event) 
Given alarm, what is the probability of burglary? i.e. P(B|A) 
Now given Earthquake, what is the probability of burglary? i.e. P(B|A�E) 
4. Mixed Inferences (some causes and some effects known) 
Given John calls and no Earth quake, what is the probability of Alarm, i.e.  
P(A|J,~E) 
 

We will demonstrate below the inferencing procedure for BNs. As an example consider 
the following linear BN without any apriori evidence. 

 
Consider computing all the marginals (with no evidence). P(A) is given, and 
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We don't need any conditional independence assumption for this. 
 
For example, suppose A, B are binary then we have  
 

Now, 
 

(B) (the marginal distribution over B) was not given originally. . . but we just computed 

 C were not independent of A given B, we would have a CPT for P(C|A,B) not 

 each node has k values, and the chain has n nodes this algorithm has complexity 

s into 

 

ynamic programming may also be used for the problem of exact inferencing in the 

 

 
P
it in the last step, so we’re OK (assuming we remembered to store P(B) somewhere). 
 
If
P(C|B).Note that we had to wait for P(B) before P(C) was calculable. 
 
If
O(nk2). Summing over the joint has complexity O(kn). 
 

omplexity can be reduced by more efficient summation by “pushing sumC
products”. 
 

 
D
above Bayes Net. The steps are as follows: 
 

. We first compute 1
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2. f  numbers, one for each possible value of 
B. 

n use  f1(B) to calculate f2(C) by summation over B 
 

 (ie finding P(D)) by solving subproblems and storing 

inte  as 
f1

nary and we want  
(C|A = t,E = t). Computing P(C,A = t,E = t) is enough—it’s a table of numbers, one for 

to just renormalise it so that they add up to 1.  

1(B) is a function representable by a table of

 
3. Here, 

4. We the

This method of solving a problem
the results is characteristic of dynamic programming. 
 
The above methodology may be generalized. We eliminated variables starting from the 
root, but we dont have to. We might have also done the following computation. 
 

The following points are to be noted about the above algorithm. The algorithm computes 
rmediate results which are not individual probabilities, but entire tables such

(C,E). It so happens that f1(C,E) = P(E|C) but we will see examples where the 
intermediate tables do not represent probability distributions.  
 
Dealing with Evidence 

Dealing with evidence is easy. Suppose {A,B,C,D,E} are all bi
P
each value of C. We need 
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It was noticed from the above computation that conditional distributions are basically just 
normalised marginal distributions. Hence,  the algorithms we study are only concerned 
with computing marginals. Getting the actual conditional probability values is a trivial 
“tidying-up” last step. 
 
Now let us concentrate on computing 

 
It can be done by plugging in the observed values for A and E and summing out B and D.  
 

We don’t really care about P(A = t), since it will cancel out.  
 
Now let us see how evidence-induce independence can be exploited. Consider the 
following computation. 
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Since,  

 
Clever variable elimination would jump straight to (5). Choosing an optimal order of 
variable elimination leads to a large amount of computational sving. However, finding 
the optimal order is a hard problem. 
 
10.5.5.1.1 Variable Elimination 

For a Bayes net, we can sometimes use the factored representation of the joint probability 
distribution to do marginalization efficiently. The key idea is to "push sums in" as far as 
possible when summing (marginalizing) out irrelevant terms, e.g., for the water sprinkler 
network 
 

 
Notice that, as we perform the innermost sums, we create new terms, which need to be 
summed over in turn e.g., 
 

 
where, 

 
Continuing this way,  
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where, 
 

 
In a nutshell, the variable elimination procedure repeats the following steps. 
 
1. Pick a variable Xi 
 
2. Multiply all expressions involving that variable, resulting in an expression f over a 
number of variables (including Xi) 
 
3. Sum out Xi, i.e. compute and store 

For the multiplication, we must compute a number for each joint instantiation of all 
variables in f, so complexity is exponential in the largest number of variables 
participating in one of these multiplicative subexpressions. 
 
If we wish to compute several marginals at the same time, we can use Dynamic 
Programming to avoid the redundant computation that would be involved if we used 
variable elimination repeatedly. 
 
Exact inferencing in a general Bayes net is a hard problem. However, for networks with 
some special topologies efficient solutions inferencing techniques. We discuss one such 
technque for a class of networks called Poly-trees. 
 
10.5.5.2 Inferencing in Poly-Trees 

A poly-tree is a graph where there is at most one undirected path between any two pair of 
nodes. The inferencing problem in poly-trees may be stated as follows. 
 
U: U1 … Um, parents of node X 
 
Y: Y1 … Yn, children of node X 
 
X: Query variable 
 
E: Evidence variables (whose truth values are known) 
 
Objective: compute P(X | E) 
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E+
X is the set of causal support for X comprising of the variables above X connected 

through its parents, which are known. 
 
E-

X is the set of evidential support for X comprising of variables below X connected 
through its children. 
 
In order to compute P(X | E) we have 
 
P(X|E)  =  P(X|EX

+,EX
-) 

 
                 P(EX

-|X,EX
+)P(X|EX

+) 
  = ------------------------------- 
  P(EX

-|EX
+) 

 
Since X d-separates EX

+ from EX
- we can simplify the numerator as 

 
P(X|E) = α P(EX

-|X)P(X|EX
+ ) 

 
where 1/α is the constant representing denominator. 
 
Both the terms – P(X|E-

X ) and P(E+
X|X) can be computed recursively using the 

conditional independence relations. If the parents are known, X is conditionally 
independent from all other nodes in the Causal support set. Similarly, given the children, 
X is independent from all other variables in the evidential support set.  
 
10.5.6 Approximate Inferencing in Bayesian Networks 
Many real models of interest, have large number of nodes, which makes exact inference 
very slow. Exact inference is NP-hard in the worst case.) We must therefore resort to 
approximation techniques. Unfortunately, approximate inference is #P-hard, but we can 
nonetheless come up with approximations which often work well in practice. Below is a 
list of the major techniques.  
 
Variational methods. The simplest example is the mean-field approximation, which 
exploits the law of large numbers to approximate large sums of random variables by their 
means. In particular, we essentially decouple all the nodes, and introduce a new 
parameter, called a variational parameter, for each node, and iteratively update these 
parameters so as to minimize the cross-entropy (KL distance) between the approximate 
and true probability distributions. Updating the variational parameters becomes a proxy 
for inference. The mean-field approximation produces a lower bound on the likelihood. 
More sophisticated methods are possible, which give tighter lower (and upper) bounds.  
 
Sampling (Monte Carlo) methods. The simplest kind is importance sampling, where we 
draw random samples x from P(X), the (unconditional) distribution on the hidden 
variables, and then weight the samples by their likelihood, P(y|x), where y is the 
evidence. A more efficient approach in high dimensions is called Monte Carlo Markov 

Version 1 CSE IIT, Kharagpur



Chain (MCMC), and includes as special cases Gibbs sampling and the Metropolis-
Hasting algorithm.  
 
 
Bounded cutset conditioning. By instantiating subsets of the variables, we can break 
loops in the graph. Unfortunately, when the cutset is large, this is very slow. By 
instantiating only a subset of values of the cutset, we can compute lower bounds on the 
probabilities of interest. Alternatively, we can sample the cutsets jointly, a technique 
known as block Gibbs sampling.  
 
Parametric approximation methods. These express the intermediate summands in a 
simpler form, e.g., by approximating them as a product of smaller factors. "Minibuckets" 
and the Boyen-Koller algorithm fall into this category.  
 
Questions 

1. 1% of women over age forty who are screened, have breast cancer. 80% of women 
who really do have breast cancer will have a positive mammography (meaning the test 
indicates she has cancer). 9.6% of women who do not actually have breast cancer will 
have a positive mammography (meaning that they are incorrectly diagnosed with cancer). 
Define two Boolean random variables, M meaning a positive mammography test and ~M 
meaning a negative test, and C meaning the woman has breast cancer and ~C means she 
does not. 
 
(a) If a woman in this age group gets a positive mammography, what is the probability 
that she actually has breast cancer? 
 
(b) True or False: The "Prior" probability, indicating the percentage of women with 
breast cancer, is not needed to compute the "Posterior" probability of a woman having 
breast cancer given a positive mammography. 
 
(c) Say a woman who gets a positive mammography test, M1, goes back and gets a 
second mammography, M2, which also is positive. Use the Naive Bayes assumption to 
compute the probability that she has breast cancer given the results from these two tests. 
 
(d) True or False: P(C | M1, M2) can be calculated in general given only P(C) and  
P(M1, M2 | C). 
 
2. Let A, B, C, D be Boolean random variables. Given that:  
 
A and B are (absolutely) independent.  
C is independent of B given A.  
D is independent of C given A and B.  
Prob(A=T) = 0.3  
Prob(B=T) = 0.6  
Prob(C=T|A=T) = 0.8  
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Prob(C=T|A=F) = 0.4  
Prob(D=T|A=T,B=T) = 0.7  
Prob(D=T|A=T,B=F) = 0.8  
Prob(D=T|A=F,B=T) = 0.1  
Prob(D=T|A=F,B=F) = 0.2  
 
Compute the following quantities:  

1) Prob(D=T)  
2) Prob(D=F,C=T)  
3) Prob(A=T|C=T)  
4) Prob(A=T|D=F)  
5) Prob(A=T,D=T|B=F).  

3. Consider a situation in which we want to reason about the relationship between 
smoking and lung cancer. We’ll use 5 Boolean random variables representing "has lung 
cancer" (C), "smokes" (S), "has a reduced life expectancy" (RLE), "exposed to second-
hand smoke" (SHS), and "at least one parent smokes" (PS). Intuitively, we know that 
whether or not a person has cancer is directly influenced by whether she is exposed to 
second-hand smoke and whether she smokes. Both of these things are affected by 
whether her parents smoke. Cancer reduces a person’s life expectancy. 

i. Draw the network (nodes and arcs only) 

ii. How many independent values are required to specify all the conditional probability 
tables (CPTs) for your network? 

iii. How many independent values are in the full joint probability distribution for this 
problem domain? 

4. Consider the following Bayesian Network containing 3 Boolean random variables: 

 

(a) Compute the following quantities: 

 (i) P(~B, C | A) 
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 (ii) P(A | ~B, C) 

4.b. Now add on to the network above a fourth node containing Boolean random variable 
D, with arcs to it from both B and C.  

 (i) Yes or No: Is A conditionally independent of D given B? 

 (ii) Yes or No: Is B conditionally independent of C given A? 

5. Consider the following probability distribution over 6 variables A,B,C,D,E, and F for 
which the factorization as stated below holds. Find and draw a Bayesian network that for 
which this factorization is true, but for which no additional factorizations nor any fewer 
factorizations are true. 

 

Solution 
 
1.a. Given:  
P(C) = 0.01, P(M|C) = 0.8, P(M| ~C) = 0.096. 
 
P(C|M) = [P(M|C)P(C)]/P(M) 
 
= [P(M|C)P(C)]/[P(M|C)P(C) + P(M| C)P( C)] 
 
= (0. 8)(0. 01)/[(0. 8)(0. 01) + (0. 096)(0. 99)] 
 
= (0. 008)/(0. 008 + 0. 09504) 
 
= 0. 0776 
 
So, there is a 7.8% chance. 
 
1.b. False, as seen in the use of Bayes’s Rule in (a). 
 
1.c. P(C|M1, M2) = [P(M1, M2|C)P(C)]/P(M1, M2) 
= [P(M1|C)P(M2|C)P(C)]/P(M1, M2) 
= (. 8)(. 8)(. 01)/P(M1, M2) = 0. 0064/P(M1, M2) 
 
Now, if we further assume that M1 and M2 are independent, then  
P(M1,M2) = P(M1)P(M2) and P(M) = (P(M|C)P(C) + P(M|~C)P(~C)  
= (. 8)(. 01) + (. 096)(1-. 01) = 0. 103 
 
Then, P(C|M1,M2) = .0064 / .103 = 0.603 (i.e., 60.3%) 
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More correctly, we don’t assume that M1 and M2 are independent, but only use the 
original Naïve Bayes assumption that M1 and M2 are conditionally independent given C. 
In this case we need to compute P(M1,M2) 
 
P(M1, M2) = P(M1, M2|C)P(C) + P(M1, Μ2|∼C)P(~C) 
= P(M1|C)P(M2|C)P(C) + P(M!|~C)P(M2|~C)P(~C) 
= (. 8)(. 8)(. 01) + (. 096)(. 096)(. 99) = 0. 0155 
 
So, P(C|M1,M2) = 0.603 / 0.0155 = 0.4129 (i.e., 41.3%) 
 
 
1.d. False. Need either P(M1, M2) or P(M1, M2 | ~C). 
 
2. The values of the quantities are given below: 
 
P(D=T) =  
P(D=T,A=T,B=T) + P(D=T,A=T,B=F) + P(D=T,A=F,B=T) + P(D=T,A=F,B=F) =  
P(D=T|A=T,B=T) P(A=T,B=T) + P(D=T|A=T,B=F) P(A=T,B=F) + 
   P(D=T|A=F,B=T) P(A=F,B=T) + P(D=T|A=F,B=F) P(A=F,B=F) =  
        (since A and B are independent absolutely)  
P(D=T|A=T,B=T) P(A=T) P(B=T) + P(D=T|A=T,B=F) P(A=T) P(B=F) + 
   P(D=T|A=F,B=T) P(A=F) P(B=T) + P(D=T|A=F,B=F) P(A=F) P(B=F) =  
0.7*0.3*0.6 + 0.8*0.3*0.4 + 0.1*0.7*0.6 + 0.2*0.7*0.4 =  0.32 
 
 
P(D=F,C=T) =  
P(D=F,C=T,A=T,B=T) + P(D=F,C=T,A=T,B=F) + P(D=F,C=T,A=F,B=T) + 
P(D=F,C=T,A=F,B=F) =  
P(D=F,C=T|A=T,B=T) P(A=T,B=T) + P(D=F,C=T|A=T,B=F) P(A=T,B=F) + 
    P(D=F,C=T|A=F,B=T) P(A=F,B=T) + P(D=F,C=T|A=F,B=F) P(A=F,B=F) =  
        (since C and D are independent given A and B) 
P(D=F|A=T,B=T) P(C=T|A=T,B=T) P(A=T,B=T) + P(D=F|A=T,B=F) P(C=T|A=T,B=F) 
P(A=T,B=F) + 
    P(D=F|A=F,B=T) P(C=T|A=F,B=T) P(A=F,B=T) +  
    P(D=F|A=F,B=F) P(C=T|A=F,B=F) P(A=F,B=F) =  
        (since C is independent of B given A and A and B are independent absolutely) 
P(D=F|A=T,B=T) P(C=T|A=T) P(A=T) P(B=T) + P(D=F|A=T,B=F) P(C=T|A=T) 
P(A=T) P(B=F) + 
  P(D=F|A=F,B=T) P(C=T|A=F) P(A=F) P(B=T) + P(D=F|A=F,B=F) P(C=T|A=F) 
P(A=F) P(B=F) = 0.3*0.8*0.3*0.6 + 0.2*0.8*0.3*0.4 + 0.9*0.4*0.7*0.6 + 
0.8*0.4*0.7*0.4 = 0.3032 
 
 
P(A=T|C=T) = P(C=T|A=T)P(A=T) / P(C=T).  
Now P(C=T) = P(C=T,A=T) + P(C=T,A=F) =  
    P(C=T|A=T)P(A=T) + P(C=T|A=F)P(A=F)  = 0.8*0.3+ 0.4*0.7 = 0.52  
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So P(C=T|A=T)P(A=T) / P(C=T) = 0.8*0.3/0.52= 0.46. 
 
P(A=T|D=F) = P(D=F|A=T) P(A=T)/P(D=F).  
Now P(D=F) = 1-P(D=T) = 0.68 from the first question above.  
P(D=F|A=T) = P(D=T,B=T|A=T) + P(D=F,B=F|A=T) = 
P(D=F|B=T,A=T) P(B=T|A=T) + P(D=F|B=F,A=T) P(B=F|A=T) =  
           (since B is independent of A) 
P(D=F|B=T,A=T) P(B=T) + P(D=F|B=F,A=T) P(B=F) = 0.3*0.6 + 0.2*0.4 = 0.26.  
So P(A=T|D=F) = P(D=F|A=T) P(A=T)/P(D=F) =  
0.26 * 0.3 / 0.68 = 0.115 
P(A=T,D=T|B=F) = P(D=T|A=T,B=F) P(A=T|B=F) = (since A and B are independent) 
P(D=T|A=T,B=F) P(A=T) = 0.8*0.3 = 0.24.  
 
 
3.i. The network is shown below 

 
ii. 1 + 2 +2 +4 +2 = 11 
 
iii. 25 – 1 = 31 
 
4.a.i.    P (~B,C | A) = P (~B | A) P (C | A) = (0.15)(0.75) = 0.1125 
 
4.a.ii. The steps are shown below 
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4.b.i. No 
 
4.b.ii. Yes 
 
5. The Bayesian network can be obtained by applying chain rule of probability in the 
order of factorization mentioned in the question. 
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