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3.1 Instructional Objective 
 
• The students should understand the formulation of multi-agent search and in detail 

two-agent search.  
• Students should b familiar with game trees. 
• Given a problem description, the student should be able to formulate it in terms of a 

two-agent search problem.  
• The student should be familiar with the minimax algorithms, and should be able to 

code the algorithm. 
• Students should understand heuristic scoring functions and standard strategies for 

generating heuristic scores. 
• Students should understand alpha-beta pruning algorithm, specifically its 

o Computational advantage 
o Optimal node ordering 

• Several advanced heuristics used in modern game playing systems like detection of 
quiescent states, lengthening should be understood. 

• A chess playing program will be analyzed in detail. 
 
At the end of this lesson the student should be able to do the following: 

• Analyze a given problem and formulate it as a two-agent search problem 
• Given a problem, apply possible strategies for two-agent search to design a 

problem solving agent. 
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3.2 Adversarial Search 
We will set up a framework for formulating a multi-person game as a search problem. 
We will consider games in which the players alternate making moves and try respectively 
to maximize and minimize a scoring function (also called utility function).  To simplify 
things a bit, we will only consider games with the following two properties: 

• Two player - we do not deal with coalitions, etc.  
• Zero sum - one player's win is the other's loss; there are no cooperative victories  

We also consider only perfect information games.  
 

3.3 Game Trees 
The above category of games can be represented as a tree where the nodes represent the 
current state of the game and the arcs represent the moves. The game tree consists of all 
possible moves for the current players starting at the root and all possible moves for the 
next player as the children of these nodes, and so forth, as far into the future of the game 
as desired. Each individual move by one player is called a "ply". The leaves of the game 
tree represent terminal positions as one where the outcome of the game is clear (a win, a 
loss, a draw, a payoff). Each terminal position has a score. High scores are good for one 
of the player, called the MAX player. The other player, called MIN player, tries to 
minimize the score. For example, we may associate 1 with a win, 0 with a draw and -1 
with a loss for MAX. 
 
Example : Game of Tic-Tac-Toe 
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Above is a section of a game tree for tic tac toe. Each node represents a board position, 
and the children of each node are the legal moves from that position. To score each 
position, we will give each position which is favorable for player 1 a positive number (the 
more positive, the more favorable). Similarly, we will give each position which is 
favorable for player 2 a negative number (the more negative, the more favorable). In our 
tic tac toe example, player 1 is 'X', player 2 is 'O', and the only three scores we will have 
are +1 for a win by 'X', -1 for a win by 'O', and 0 for a draw. Note here that the blue 
scores are the only ones that can be computed by looking at the current position.  

3.4 Minimax Algorithm  

Now that we have a way of representing the game in our program, how do we compute 
our optimal move? We will assume that the opponent is rational; that is, the opponent can 
compute moves just as well as we can, and the opponent will always choose the optimal 
move with the assumption that we, too, will play perfectly. One algorithm for computing 
the best move is the minimax algorithm:  
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minimax(player,board) 
    if(game over in current board position) 
        return winner 
    children = all legal moves for player from this board 
    if(max's turn) 
        return maximal score of calling minimax on all the children 
    else (min's turn) 
        return minimal score of calling minimax on all the children 
 
If the game is over in the given position, then there is nothing to compute; minimax will 
simply return the score of the board. Otherwise, minimax will go through each possible 
child, and (by recursively calling itself) evaluate each possible move. Then, the best 
possible move will be chosen, where ‘best’ is the move leading to the board with the 
most positive score for player 1, and the board with the most negative score for player 2.  
 
How long does this algorithm take? For a simple game like tic tac toe, not too long - it 
is certainly possible to search all possible positions. For a game like Chess or Go 
however, the running time is prohibitively expensive. In fact, to completely search either 
of these games, we would first need to develop interstellar travel, as by the time we finish 
analyzing a move the sun will have gone nova and the earth will no longer exist. 
Therefore, all real computer games will search, not to the end of the game, but only a few 
moves ahead. Of course, now the program must determine whether a certain board 
position is 'good' or 'bad' for a certainly player. This is often done using an evaluation 
function. This function is the key to a strong computer game. The depth bound search 
may stop just as things get interesting (e.g. in the middle of a piece exchange in chess. 
For this reason, the depth bound is usually extended to the end of an exchange to an 
quiescent state.  The search may also tend to postpone bad news until after the depth 
bound leading to the horizon effect. 
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