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3.1 Introduction  

We have outlined the different types of search strategies. In the earlier chapter we have 
looked at different blind search strategies. Uninformed search methods lack problem-
specific knowledge. Such methods are prohibitively inefficient in many cases. Using 
problem-specific knowledge can dramatically improve the search speed. In this chapter 
we will study some informed search algorithms that use problem specific heuristics. 
 
Review of different Search Strategies 
1. Blind Search 

a) Depth first search 
b) Breadth first search 
c) Iterative deepening search 
d) Bidirectional search 

2. Informed Search 

3.1.1 Graph Search Algorithm 

We begin by outlining the general graph search algorithm below. 
 
  Graph search algorithm 
Let fringe be a list containing the initial state 
Let closed be initially empty  
Loop 
      if fringe is empty return failure 
      Node  remove-first (fringe) 
  if Node is a goal 
      then return the path from initial state to Node 
          else put Node in closed  
         generate all successors of Node S 
         for all nodes m in S 
                        if m is not in fringe or closed  
        merge m into fringe 
End Loop  
 
 

3.1.2 Review of Uniform-Cost Search (UCS) 

We will now review a variation of breadth first search we considered before, namely 
Uniform cost search. 
 
To review, in uniform cost search we enqueue nodes by path cost.  
 
Let g(n) = cost of the path from the start node to the current node n.  
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The algorithm sorts nodes by increasing value of g, and expands the lowest cost node of 
the fringe. 
 
Properties of Uniform Cost Search 

• Complete  
• Optimal/Admissible  
• Exponential time and space complexity, O(bd)  

 
The UCS algorithm uses the value of g(n) to select the order of node expansion. We will 
now introduce informed search or heuristic search that uses problem specific heuristic 
information. The heuristic will be used to select the order of node expansion. 

3.1.3 Informed Search 

We have seen that uninformed search methods that systematically explore the state space 
and find the goal. They are inefficient in most cases. Informed search methods use 
problem specific knowledge, and may be more efficient. At the heart of such algorithms 
there is the concept of a heuristic function. 

3.1.3.1 Heuristics 

Heuristic means “rule of thumb”.  To quote Judea Pearl, “Heuristics are criteria, methods 
or principles for deciding which among several alternative courses of action promises to 
be the most effective in order to achieve some goal”. In heuristic search or informed 
search, heuristics are used to identify the most promising search path. 

Example of Heuristic Function 

A heuristic function at a node n is an estimate of the optimum cost from the current node 
to a goal. It is denoted by h(n). 
h(n) = estimated cost of the cheapest path from node n to a goal node 
 
Example 1: We want a path from Kolkata to Guwahati 
Heuristic for Guwahati may be straight-line distance between Kolkata and Guwahati 
h(Kolkata) = euclideanDistance(Kolkata, Guwahati) 
 
Example 2: 8-puzzle: Misplaced Tiles Heuristics is the number of tiles out of place. 
 
 
                                                                       
 
 
 
   Initial State  Goal state 

1 2 3 

8  4 

7 6 5 

2 8 3 

1 6 4 

 7 5 

 

Figure 1: 8 puzzle 
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The first picture shows the current state n, and the second picture the goal state. 
h(n) = 5 
because the tiles 2, 8, 1, 6 and 7 are out of place. 
 
Manhattan Distance Heuristic: Another heuristic for 8-puzzle is the Manhattan distance 
heuristic. This heuristic sums the distance that the tiles are out of place. The distance of a 
tile is measured by the sum of the differences in the x-positions and the y-positions. 
For the above example, using the Manhattan distance heuristic,  
h(n) = 1 + 1 + 0 + 0 + 0 + 1 + 1 + 2 = 6 
 
We will now study a heuristic search algorithm best-first search. 

3.2  Best First Search 

Uniform Cost Search is a special case of the best first search algorithm. The algorithm 
maintains a priority queue of nodes to be explored. A cost function f(n) is applied to each 
node. The nodes are put in OPEN in the order of their f values. Nodes with smaller f(n) 
values are expanded earlier. The generic best first search algorithm is outlined below. 
 

Best First Search 
Let fringe be a priority queue containing the initial state  
Loop 
      if fringe is empty return failure 
      Node  remove-first (fringe) 
  if Node is a goal 
      then return the path from initial state to Node 
          else generate all successors of Node, and     
             put the newly generated nodes into fringe     
             according to their f values 
End Loop  

 
We will now consider different ways of defining the function f. This leads to different 
search algorithms. 

3.2.1 Greedy Search 

In greedy search, the idea is to expand the node with the smallest estimated cost to reach 
the goal. 
We use a heuristic function  
f(n) = h(n)  
h(n) estimates the distance remaining to a goal. 
Greedy algorithms often perform very well. They tend to find good solutions quickly, 
although not always optimal ones. 
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The resulting algorithm is not optimal. The algorithm is also incomplete, and it may fail 
to find a solution even if one exists. This can be seen by running greedy search on the 
following example. A good heuristic for the route-finding problem would be straight-line 
distance to the goal. 
 
Figure 2 is an example of a route finding problem. S is the starting state, G is the goal 
state. 
 

 
Figure 2 

 
 
 
 

 
Figure 3 
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Let us run the greedy search algorithm for the graph given in Figure 2. The straight line 
distance heuristic estimates for the nodes are shown in Figure 3. 
 

S
 

 
Step 1: S is expanded. Its children are A and D. 
 

S

A D
10.4 8.9

S

A D
10.4 8.9

 
 
Step 2: D has smaller cost and is expanded next. 
 

S

A D
10.4 8.9

A E
10.4 6.9

S

A D
10.4 8.9

A E
10.4 6.9

 
 
 

 
 

S

A D
10.4 8.9

A E
10.4 6.9

B F
6.7 3.0

S

A D
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A E
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Figure 4 

 

Greedy Best-First Search illustrated 
We will run greedy best first search on the problem in Figure 2. We use the straight line 
heuristic. h(n) is taken to be the straight line distance from n to the goal position. 
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The nodes will be expanded in the following order: 
A 

Clearly this is not an optimum path. The path A-B-C-F-H has a cost of 39. 

3.2.2 A* Search 

is algorithm was given by Hart, 

 
 algorithm with  

 n to goal 

ce so far + estimated distance remaining 

imates the cost of any solution that can be 
 solution path from n to a goal node, 

nd if h is admissible, 

al solution. 

 

B 
E 
G 
H 

The path obtained is A-B-E-G-H and its cost is 99 

We will next consider the famous A* algorithm. Th
Nilsson & Rafael in 1968. 

A* is a best first search
f(n) = g(n) + h(n) 
where  
g(n) = sum of edge costs from start to n 

(n) = estimate of lowest cost path fromh
 
f(n) = actual distan
 
h(n) is said to be admissible if it underest
reached from n. If C*(n) is the cost of the cheapest
a
h(n) <= C*(n). 

e can prove that if h(n) is admissible, then the search will find an optimW
 
The algorithm A* is outlined below: 
 

Algorithm A*
OPEN = nodes on frontier.     CLOSED = expanded nodes. 
OPEN = {<s, nil>} 

     remove from OPEN the node <n,p> with minimum f(n) 
 on CLOSED 

g n & m with cost c 

 and {p|e} is cheaper than q 

while OPEN is not empty 

     place <n,p>
     if n is a goal node,  

ss (path p)              return succe
     for each edge connectin
         if <m, q> is on CLOSED and {p|e} is cheaper than q 

LOSED,                then remove n from C
|e}> on OPEN                       put <m,{p

         else if <m,q> is on OPEN
              then replace q with {p|e} 
         else if m is not on OPEN  
               then put <m,{p|e}> on OPEN 
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return failure 
 
 

 

3.2.1 A* illustrated 
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The heuristic function used is straight line distance. The order of nodes expanded, and the 
status of Fringe is shown in the following table. 
 

Steps Fringe Node 
expanded 

Comments 

1 A   
2 B(26.6) A  
3 E(27.5),  C(35.1),  D(35.2) B  
4 C(35.1),  D(35.2), C(41.2) 

G(92.5) 
rted as there is 

another C with lower cost. 
E C is not inse

5 D(35.2), F(37), G(92.5)  C  
6 F(37), G(92.5) D  
7 H(39), G(42.5) F G is replaced with a lower 

cost node 
8 H G(42.5) Goal test successful. 

 
The path returned is  A-B-C-F-H. 
The path cost is 39. This is an optimal path. 
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3.2.2 A* search: properties 

is means that provided a solution exists, the first 
A* is admissible under the following 

onditions: 

 number of successors 
 Every arc in the graph has a cost greater than some ε> 0 

mplete under the above conditions. 
 
A* is optim  search algorithms that 
expand sea  timal algorithm 
wil

nential in the worst case. 

d 

 heuristic is consistent if:  

(n) <= cost(n, n') + h(n') 

he heuristic shown below is inconsistent, because h(n) = 4, but  
ost(n, n') + h(n') = 1 + 2 = 3, which is less than 4. This makes the value of f decrease 

The algorithm A* is admissible. Th
solution found by A* is an optimal solution. 
c

• In the state space graph 
o Every node has a finite
o

• Heuristic function: for every node n,  h(n) ≤ h*(n) 
 
A* is also co

ally efficient for a given heuristic – of the optimal
rch paths from the root node, it can be shown that no other op

l expand fewer nodes and find a solution 
 
However, the number of nodes searched still expo
 
Unfortunately, estimates are usually not good enough for A* to avoid having to expan
an exponential number of nodes to find the optimal solution. In addition, A* must keep 
all nodes it is considering in memory. 
 
A* is still much more efficient than uninformed methods. 
 
It is always better to use a heuristic function with higher values as long as it does not 
overestimate. 
 
A
 
h
 
For example, t
c
from node n to node n': 
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If a heuristic h is consistent, the f values along any path will be nondecreasing: 
 

f(n')  =  estimated distance from start to goal through n' 

  =  actual distance from start to n + step cost from n to n' + 
estimated distance from n' to goal 

  =  g(n) + cost(n, n') + h(n') 
  >  g(n) + h(n) because cost(n, n') + h(n') > h(n) by consistency 
  =  f(n) 
Therefore f(n') >  f(n), so f never decreases along a path. 

 
If a heuristic h is inconsistent, we can tweak the f values so that they behave as if h were 
consistent, using the pathmax equation:  
f(n') = max(f(n), g(n') + h(n')) 
 
This ensures that the f values never decrease along a path from the start to a goal. 
Given nondecreasing values of f, we can think of A* as searching outward from the start 
node through successive contours of nodes, where all of the nodes in a contour have the 
same f value: 
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For any contour, A* examines all of the nodes in the contour before looking at any 
contours further out. If a solution exists, the goal node in the closest contour to the start 
node will be found first. 
 
We will now prove the admissibility of A*. 

3.2.3  Proof of Admissibility of A* 

We will show that A* is admissible if it uses a monotone heuristic. 
 
A monotone heuristic is such that along any path the f-cost never decreases. 
But if this property does not hold for a given heuristic function, we can make the f value 
monotone by making use of the following trick (m is a child of n) 
f(m) = max (f(n), g(m) + h(m)) 
 

o Let G be an optimal goal state  
o C* is the optimal path cost. 
o G2 is a suboptimal goal state: g(G2) > C* 

 
Suppose A* has selected G2 from OPEN for expansion. 
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Consider a node n on OPEN on an optimal path to G.  Thus  C* ≥ f(n) 
Since n is not chosen for expansion over G2, f(n) ≥ f(G2) 
G2 is a goal state. f(G2) = g(G2) 
Hence C* ≥ g(G2). 
This is a contradiction. Thus A* could not have selected G2 for expansion before 
reaching the goal by an optimal path. 

3.2.4 Proof of Completeness of A* 

Let G be an optimal goal state. 
A* cannot reach a goal state only if there are infinitely many nodes where f(n) ≤ C*. 
This can only happen if either happens: 

o There is a node with infinite branching factor. The first condition takes care of 
this. 

o There is a path with finite cost but infinitely many nodes. But we assumed that 
Every arc in the graph has a cost greater than some ε> 0. Thus if there are 
infinitely many nodes on a path g(n) > f*, the cost of that path will be infinite. 

 
 
Lemma: A* expands nodes in increasing order of their f values. 
 
A* is thus complete and optimal, assuming an admissible and consistent heuristic 
function (or using the pathmax equation to simulate consistency). 
A* is also optimally efficient, meaning that it expands only the minimal number of 
nodes needed to ensure optimality and completeness. 

3.2.4 Performance Analysis of A* 

Model the search space by a uniform b-ary tree with a unique start state s, and a goal 
state, g at a distance N from s. 
The number of nodes expanded by A* is exponential in N unless the heuristic estimate is 
logarithmically accurate 
|h(n) – h*(n)|  ≤ O ( log h*(n) ) 
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In practice most heuristics have proportional error. 
 
It becomes often difficult to use A* as the OPEN queue grows very large. 
A solution is to use algorithms that work with less memory. 

3.2.5 Properties of Heuristics 

Dominance: 
h2 is said to dominate h1  iff h2(n) ≥ h1(n) for any node n. 
A* will expand fewer nodes on average using h2 than h1. 
 
Proof: 

Every node for which f(n) < C* will be expanded. Thus n is expanded whenever  

                         h(n) < f* - g(n) 

Since h2(n) ≥ h1(n) any node expanded using h2 will be expanded using h1. 

3.2.6 Using multiple heuristics 

Suppose you have identified a number of non-overestimating heuristics for a problem: 
h1(n), h2(n), … , hk(n) 
 
Then  
 max (h1(n), h2(n), … , hk(n))  
is a more powerful non-overestimating heuristic. This follows from the property of 
dominance 
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