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9.4.5 Partial-Order Planning 

Total-Order vs. Partial-Order Planners  

Any planner that maintains a partial solution as a totally ordered list of steps found so far 
is called a total-order planner, or a linear planner. Alternatively, if we only represent 
partial-order constraints on steps, then we have a partial-order planner, which is also 
called a non-linear planner. In this case, we specify a set of temporal constraints 
between pairs of steps of the form S1 < S2 meaning that step S1 comes before, but not 
necessarily immediately before, step S2. We also show this temporal constraint in graph 
form as  

S1 +++++++++> S2 

STRIPS is a total-order planner, as are situation-space progression and regression 
planners  

Partial-order planners exhibit the property of least commitment because constraints 
ordering steps will only be inserted when necessary. On the other hand, situation-space 
progression planners make commitments about the order of steps as they try to find a 
solution and therefore may make mistakes from poor guesses about the right order of 
steps.  

Representing a Partial-Order Plan  
A partial-order plan will be represented as a graph that describes the temporal constraints 
between plan steps selected so far. That is, each node will represent a single step in the 
plan (i.e., an instance of one of the operators), and an arc will designate a temporal 
constraint between the two steps connected by the arc. For example,  

• S1 ++++++++> S2 ++++++++++> S5 
•  |\                         ^ 
•  | \++++++++++++++++|       | 
•  |                  v       | 

 ++++++> S3 ++++++> S4 ++++++ 
 

graphically represents the temporal constraints S1 < S2, S1 < S3, S1 < S4, S2 < S5, S3 < 
S4, and S4 < S5. This partial-order plan implicitly represents the following three total-
order plans, each of which is consistent with all of the given constraints:  
 
[S1,S2,S3,S4,S5], [S1,S3,S2,S4,S5], and [S1,S3,S4,S2,S5].  
 
9.5 Plan-Space Planning Algorithms 
An alternative is to search through the space of plans rather than a space of situations. 
That is, we start with a simple, incomplete plan, which we call a partial plan.   Then we 
consider ways of expanding the partial plan until we come up with a complete plan that 
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solves the problem.  We use this approach when the ordering of sub-goals affects the 
solution. 

Here one starts with a simple, incomplete plan, a partial plan, and we look at ways of 
expanding the partial plan until we come up with a complete plan that solves the problem. 
The operators for this search are operators on plans: adding a step, imposing an ordering 
that puts one step before another, instantiating a previously unbound variable, and so on. 
Therefore the solution is the final plan. 

Two types of operators are used: 

• Refinement operators take a partial plan and add constraints to it. They eliminate 
some plans from the set and they never add new plans to it.  

• A modification operator debugs incorrect plans that the planner may make, 
therefore we can worry about bugs later. 

9.5.1 Representation of Plans 
A plan is formally defined as a data structure consisting of the following 4 components: 

1. A set of plan steps  
2. A set of step ordering constraints  
3. A set of variable binding constraints  
4. A set of causal links  
 

Example: 
Plan( 
  STEPS:{S1:Op(ACTION: Start), 
         S2:Op(ACTION: Finish, 
         PRECOND: Ontable(c), On(b,c), On(a,b) }, 
  ORDERINGS: {S1 < S2}, 
  BINDINGS:  {}, 
  LINKS:     {} ) 
 
 

Key Difference Between Plan-Space Planning and Situation-Space Planning  
In Situation-Space planners all operations, all variables, and all orderings must be fixed 
when each operator is applied. Plan-Space planners make commitments (i.e., what steps 
in what order) only as necessary. Hence, Plan-Space planners do least-commitment 
planning.  

 

 

Version 1 CSE IIT, Kharagpur



Start Node in Plan Space  

The initial plan is created from the initial state description and the goal description by 
creating two "pseudo-steps:"  

Start  

 P: none 
E: all positive literals defining the initial state 

Finish  

 P: literals defining the conjunctive goal to be achieved 
E: none 

and then creating the initial plan as: Start ---------> Finish  

Searching Through Plan Space  
There are two main reasons why a given plan may not be a solution:  

Unsatisfied goal. That is, there is a goal or sub-goal that is not satisfied by the 
current plan steps.  

Possible threat caused by a plan step that could cause the undoing of a needed 
goal if that step is done at the wrong time  

So, define a set of plan modification operators that detect and fix these problems. 

Example 

• Goal: Set the table, i.e., on(Tablecloth) ^ out(Glasses) ^ out(Plates) ^ 
out(Silverware)  

• Initial State: clear(Table)  
• Operators:  
1. Lay-tablecloth  
2.  P: clear(Table) 

 E: on(Tablecloth), ~clear(Table) 

3. Put-out(x)  
4.  P: none 

 E: out(x), ~clear(Table) 

• Searching for a Solution in Plan Space  
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1. Initial Plan  

Start -----------> Finish 

2. Solve 4 unsolved goals in Finish by adding 4 new steps with the minimal 
temporal constraints possible:  

                                          on(Tablecloth) 
Start ------> S1: Lay-tablecloth -------------------------
>Finish 
       \  \  \                            out(Glasses)     ^ ^ 
^ 
        \  \  \----> S2: Put-out(Glasses) -----------------| | 
| 
         \  \                             out(Plates)       /  
/ 
          \  \-----> S3: Put-out(Plates) ------------------/  
/ 
           \                                 out(Silverware) / 

\------> S4: Put-out(Silverware) ---------------/ 

3. Solve unsolved subgoal clear(Table) which is a precondition of step S1:  

            clear(Table)                          
on(Tablecloth) 
Start -----------> S1: Lay-tablecloth -----------------------
>Finish 
       \  \  \                                 out(Glasses)    
^ ^ ^ 
        \  \  \---------> S2: Put-out(Glasses) ---------------
-| | | 
         \  \                                  
out(Plates)       | | 
          \  \----------> S3: Put-out(Plates) ----------------
--/  | 
           \                                      
out(Silverware) / 

\-----------> S4: Put-out(Silverware) ------------
---/ 

4.  Fix threats caused by steps S2, S3, and S4 on the link from Start to S1. That is, 
clear(Table) is a necessary precondition of S1 that is created by step Start. But 
S2 causes clear(Table) to be deleted (negated), so if S2 came before S1, 
clear(Table) wouldn't be true and step S1 couldn't be performed. Therefore, add 
a temporal constraint that forces S2 to come anytime after S1. That is, add 
constraint S1 < S2. Similarly, add S1 < S3, and S1 < S4, resulting in the new 
plan:  
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     clear(Table)                      on(Tablecloth) 
Start -----------> S1: Lay-tablecloth ----------------------
>Finish 
| | |              |\--|---|                                  
^ ^ ^ 
| | |              |   |   v                    out(Glasses)  
| | | 
| | |--------------+---+-> S2: Put-out(Glasses) --------------
/ | | 
| |                |   v                     
out(Plates)        / | 
| |----------------+-> S3: Put-out(Plates) -------------------
-/  | 
|                  v                          
out(Silverware)    / 

|---------------> S4: Put-out(Silverware) -------------
---------/ 

5. No threats and no unsolved goals in this plan, so it is a complete plan (i.e., a 
solution to the planning problem). Any total ordering of the steps implied by this 
partial-order plan is a solution plan. Here, there are six possible plans, where the 
first step is S1, and the steps S2, S3, and S4 follow in any order. (Don't include 
the pseudo-steps Start and Finish.)  

Interleaving vs. Non-Interleaving of Sub-Plan Steps 

Given a conjunctive goal, G1 ^ G2, if the steps that solve G1 must either all come before 
or all come after the steps that solve G2, then the planner is called a non-interleaving 
planner. Otherwise, the planner allows interleaving of sub-plan steps. This constraint is 
different from the issue of partial-order vs. total-order planners. STRIPS is a non-
interleaving planner because of its use of a stack to order goals to be achieved.  

Partial-Order Planner (POP) Algorithm 

function pop(initial-state, conjunctive-goal, operators) 
  // non-deterministic algorithm 
  plan = make-initial-plan(initial-state, conjunctive-goal); 
  loop: 
    begin 
      if solution?(plan) then return plan; 
      (S-need, c) = select-subgoal(plan) ; // choose an unsolved goal 
      choose-operator(plan, operators, S-need, c); 
          // select an operator to solve that goal and revise plan 
      resolve-threats(plan);  // fix any threats created 
    end 
end 
 
function solution?(plan) 
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  if causal-links-establishing-all-preconditions-of-all-steps(plan) 
     and all-threats-resolved(plan) 
     and all-temporal-ordering-constraints-consistent(plan) 
     and all-variable-bindings-consistent(plan) 
  then return true; 
  else return false; 
end 
 
function select-subgoal(plan) 
  pick a plan step S-need from steps(plan) with a precondition c 
     that has not been achieved; 
  return (S-need, c); 
end 
 
procedure choose-operator(plan, operators, S-need, c) 
  // solve "open precondition" of some step 
  choose a step S-add by either 
    Step Addition: adding a new step from operators that 
       has c in its Add-list 
    or Simple Establishment: picking an existing step in Steps(plan) 
       that has c in its Add-list; 
  if no such step then return fail; 
  add causal link "S-add --->c S-need" to Links(plan); 
  d temporal ordering constrain S-add < S-need" to Orderings(plan); ad t "
  if S-add is a newly added step then 
    begin 
    add S-add to Steps(plan); 
    add "Start < S-add" and "S-add < Finish" to Orderings(plan); 
    end 
end 
 
procedure resolve-threats(plan) 
  foreach S-threat that threatens link "Si --->c Sj" in Links(plan) 
   begin     // "declobber" threat 
     choose either 
       Demotion: add "S-threat < Si" to Orderings(plan) 
       or Promotion: add "Sj < S-threat" to Orderings(plan); 
     if not(consistent(plan)) then return fail; 
   
end 

end 

Plan Modification Operations 

The above algorithm uses four basic plan modification operations to revise a plan, two 
for solving a goal and two for fixing a threat:  

• Establishment -- "Solve an Open Precondition" (i.e., unsolved goal)  
If a precondition p of a step S does not have a causal link to it, then it is not yet 
solved. This is called an open precondition. Two ways to solve:  

o Simple Establishment  
Find an existing step T prior to S in which p is necessarily true (i.e., it's in 
the Effects list of T). Then add causal link from T to S.  
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o Step Addition  
Add a new plan step T that contains in its Effects list p. Then add causal 
link from T to S. 

• Declobbering -- Threat Removal  
A threat is a relationship between a step S3 and a causal link S1 --->p S2, where 
p is a precondition in step S2, that has the following form:  

•  -------> S1 --------->p S2 
•  | 
•  | 

 -------> S3 ~p 

That is, step S3 has effect ~p and from the temporal links could possibly occur in-
between steps S1 and S2, which have a causal link between them. If this occurred, 
then S3 would "clobber" the goal p "produced" by S1 before it can be "consumed" 
by S2. Fix by ensuring that S3 cannot occur in the "protection interval" in between 
S1 and S2 by doing either of the following:  

o Promotion  
Force threatening step to come after the causal link. I.e., add temporal link 
S2 < S3.  

Demotion  
Force threatening step to come before the causal link. I.e., add temporal 
link S3 < S1. 

9.5.2 Simple Sock/Shoe Example 
 
In the following example, we will show how the planning algorithm derives a solution to 
a problem that involves putting on a pair of shoes. In this problem scenario, Pat is 
walking around his house in his bare feet. He wants to put some shoes on to go outside. 
Note: There are no threats in this example and therefore is no mention of checking for 
threats though it a necessary step 
  
To correctly represent this problem, we must break down the problem into simpler, more 
atomic states that the planner can recognize and work with. We first define the Start 
operator and the Finish operator to create the minimal partial order plan. As mentioned 
before, we must simplify and break down the situation into smaller, more appropriate 
states. The Start operator is represented by the effects: ~LeftSockOn, ~LeftShoeOn, 
~RightSockOn, and ~RightShoeOn. The Finish operator has the preconditions that we 
wish to meet: LeftShoeOn and RightShoeOn. Before we derive a plan that will allow Pat 
to reach his goal (i.e. satisfying the condition of having both his left and right shoe on) 
from the initial state of having nothing on, we need to define some operators to get us 
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there. Here are the operators that we will use and the possible state (already mentioned 
above). 
 
Operators 
Op(ACTION: PutLeftSockOn() PRECOND:~LeftSockOn EFFECT: LeftSockOn)  
Op(ACTION: PutRightSockOn() PRECOND:~RightSockOn EFFECT: RightSockOn)  
Op(ACTION: PutLeftShoeOn() PRECOND:LeftSockOn EFFECT: LeftShoeOn) 
Op(ACTION: PutRightShoeOn() PRECOND:RightShoeOn EFFECT: RightShoeOn) 
  
States 
LeftSockOn, LeftShoeOn, RightSockOn, RightShoeOn 
 
Creating A Plan  
 
From the states listed above, we first create a minimal partial order plan. We can 
represent bare feet (Start operator) by saying that Pat is not wearing any socks or shoes 
and shoes on (Finish operator) with the two shoe on states. Here is the minimal partial 
order plan.  
 
Initially we have two preconditions to achieve; RightShoeOn and LeftShoeOn. Let's start 
with the condition of having our right shoe on. We must choose an operator that will 
result in this condition. To meet this condition we need to the operator 
'PutRightShoeOn()'. We add the operator and create a causal link between it and the 
Finish operator. However, adding this operator results a new condition (i.e. precondition 
of PutRightShoeOn()) of having the right sock on.  
 

 
 

At this point we still have two conditions to meet: having our left shoe on and having our 
right sock on. We continue by selecting one of these two preconditions and trying to 
achieve it. Let's pick the precondition of having our right sock on. To satisfy this 
condition, we must add another step, operator 'PutRightSockOn()'. The effects of this 
operator will satisfy the precondition of having our right sock on. At this point, we have 
achieved the ‘RightSockOn’ state. Since the precondition of the ‘PutRightSockOn()’ 
operator is one of the effects of the Start operator, we can simply draw a causal link 
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between the two operators. These two steps can be repeated for Pat’s left shoe. The plan 
is complete when all preconditions are resolved. 
 

 
  
The Partial Order Planning algorithm can be described as a form of regression planning 
that use the principle of least commitment. It starts with a minimal partial order plan that 
consists of a Start operator (initial state) and a Finish operator (goal state). It then chooses 
a precondition that has not been resolved and chooses an operator whose effect matches 
the precondition. It then checks if any threats were created by the addition of the operator 
and if one is detected, resolves it either by demoting the operator, promoting the operator, 
or backtracking (removing the operator). It continues to choose operators until a solution 
is found (i.e. all preconditions are resolved). 
 
Solutions created by the Partial Order Planning algorithm are very flexible. They may be 
executed in many ways. They can represent many different total order plans (partial order 
plans can be converted to total order plans using a process called linearization). Lastly 
they can more efficiently if steps are executed simultaneously. 
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Questions 
 
1. Consider the world of Shakey the robot, as shown below.  

 
 
Shakey has the following six actions available: 
 
• Go(x,y), which moves Shakey from x to y. It requires Shakey to be at x and that x and y 
are locations in the same room. By convention a door between two rooms is in both of 
them, and the corridor counts as a room. 
 
• Push(b,x,y), which allows Shakey to push a box b from location x to location y. Both 
Shakey and the box must be at the same location before this action can be used. 
 
• ClimbUp(b,x), which allows Shakey to climb onto box b at location x. Both Shakey and 
the box must be at the same location before this action can be used. Also Shakey must be 
on the Floor. 
 
• ClimbDown(b,x), which allows Shakey to climb down from a box b at location x. 
Shakey must be on the box and the box must be in location x before this action can be 
used. 
 
• TurnOn(s,x), which allows Shakey to turn on switch s which is located at location x. 
Shakey must be on top of a box at the switch’s location before this action can be used. 
 
• TurnOff(s,x), which allows Shakey to turn off switch s which is located at location x. 
Shakey must be on top of a box at the switch’s location before this action can be used. 
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Using STRIPS syntax, define the six actions from above. In your action definitions, use 
only the following predicates: Box(b) to mean that b is a box, In(x,r) to mean that location 
x is in room r, At(x,y) to mean that the object x is at location y, ShakeyOn(x) to mean that 
Shakey is on the object x, Switch(s) to mean that s is a switch, and SwitchOn(s) to mean 
that the switch s is on. You may also use the constants Shakey and Floor in the action 
definitions. 
 
2. In the above problem, using STRIPS, define the initial state depicted on the previous 
page. Use only the predicates from part (a) and the constants Box1, Box2, Switch1, 
Switch2, Floor,Shakey, Room1, Room2, Corridor, LDoor1, LDoor2, LShakeyStart, LSwitch1, 
LBox1Start, LBox2Start,LSwitch2. The Lx constants are intended to represent the locations of x, 
 
3. Provide a totally ordered plan for Shakey to turn off Switch2 using the actions 
and the initial state defined in (2) and (3). 
 
4. Consider the inconsistent partially ordered plan below. Identify the conflicts in this 
plan and show all ways of resolving them that follow the principle of least commitment. 
For each solution, draw the new partially ordered plan, and list all of its linearizations. 
 

 
 
Solutions 
 
1. STRIPS description of the operators are: 
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2. The initial state is: 
 

 
 
3. The plan is 

 
 
4. Conflicts: 
• ActionC cannot come between Start and ActionA. 
• ActionD cannot come between ActionA and ActionB. 
 
Resolution 1: 
 

 
 
Linearizations of Resolution 1: (ActionA abbreviated as A, and so on…) 
Start, D, A, B, C, Finish 
Start, D, A, C, B, Finish 
 
Resolution 2: 
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Linearizations of Resolution 2: (ActionA abbreviated as A, and so on…) 
Start, A, B, D, C, Finish 
Start, A, B, C, D, Finish 
Start, A, C, B, D, Finish 
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