
Chapter 3

Linear Oscillators { One Degree

of Freedom

3.1 Overview

What do these things have in common: propagation of seismic waves generated by earth-

quakes, remote detection of complex molecules via infrared spectra, the electric and magnetic

�elds in a microwave cavity, and grandfather clocks ? The humble simple harmonic oscil-

lator plays a starring rôle in the understanding of all of these. Not just for springs anymore,

Hooke's law even reaches into modern quantum �eld theory!

It is hard to overstate the importance of the harmonic oscillator as a basic concept.

Many physical systems, such as the examples just mentioned, are usefully treated as one or

more harmonic oscillators. The equations of motion of a simple harmonic oscillator (often

abbreviated to SHO) are linear, making the mathematical analysis very easy. So easy in

fact, that external driving forces and damping can be included, and the problem is still

completely soluble. Best of all, with these ingredients a pretty good approximate treatment

of many phenomena is possible.

Later, we will �nd out how to handle small oscillations in systems with many degrees of

freedom. In this chapter, however, we will stick to one degree of freedom. First, we examine

the idea of constructing linearized equations of motion near static equilibria. That's how

the simple harmonic oscillator dynamics arise in the �rst place. Then, the solutions with

damping are studied in detail in section 3.4. After a break to have a good look at things in

phase space in section 3.5, the �nal ingredient, external driving forces, are added in section

3.6. Simple sinusoidal driving is considered �rst, revealing the phenomenon of resonance.

Then arbitrary driving, using an important tool known as a Green function.

3.2 Static Equilibria: Stable and Unstable

Figure 3.1(a) depicts a more-or-less random potential in one dimension. The force on a

particle in this potential is the derivative of V (x), so the particle experiences no force at the
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Figure 3.1: (a) A generic one-dimensional potential showing some static equilibria. (b) The

potential for a plane pendulum. � = 0 is a stable equilibrium, � = � and unstable one

(� = �� is exactly the same thing).

positions where the graph of V is 
at. Such a position is called a static equilibrium, and

the particle can remain at rest inde�nitely at such a point. The labelled points in the �gure

are all static equilibria.

The fate of a particle placed near a static equilibrium, but not precisely at it, is at least

as interesting. After all, it is surely impossible to get it precisely on the equilibrium (and

at rest, to boot), and even if it were, tiny environmental disturbances would surely shift it

o�. So the question arises: if it's close to the equilibrium, does it stay close or does it move

ever further away? There are several possibilities. If the equilibrium is a local minimum of

the potential, as Point C in the �gure, the resulting force will tend to push it back if it is

displaced slightly. This is a stable equilibrium. If the equilibrium is a local maximum, as

are points A and D, it is an unstable equilibria, because a slight displacement leads to a

force which tends to push the particle yet further from the equilibrium. It is also possible

to have points such as B, which are neither local minima nor maxima. Pushed one way, the

particle experiences a force back toward equilibrium; pushed the other way, a force away

from it. It is really unstable, though, as any displacement will result in its ending up on the

downhill side.

3.3 Linearized Dynamics Near Static Equilibrium

Quite often, the potential near an equilibrium x0 is smooth. In that case, a truncated Taylor

series expansion can be made. We write

V (x0 + Æ) � V (x0) + V 0(x0) Æ +
1

2
V 00(x0) Æ

2: (3.1)

The mere fact that x0 is a static equilibrium means that the �rst derivative vanishes there,

so this approximates the potential as a parabola, either opening up or opening down. It

is possible that the second derivative of V also vanishes at x0, buth that would be rather

unusual, and we do not consider it further in this chapter.

For a body of mass m moving along a line, the equation of motion is found from the



3.3. LINEARIZED DYNAMICS NEAR STATIC EQUILIBRIUM 53

force,

F (x0 + Æ) = �

dV

dx
� V 00(x0)Æ:

The result is

m�Æ = V 00(x0) Æ:

This di�erential equation is linear and therefore very easy to solve. We'll return to it shortly.

This process of linearization can be carried out near a static equilibrium of a system

with an arbitrary number of degrees of freedom, but for now only one degree of freedom is

considered. However, we will deal with more general systems than particles moving in one

Cartesian direction. For instance, consider a plane pendulum, with the potential shown in

Figure 3.1(b). Clearly, � = 0 is a stable equilibrium and � = � is unstable. Although the

motion is one-dimensional, it is not along a line. We could use Newtonian methods, but

since we now have that tool, we'll use the Lagrangian

L =
m`2

2
_�2 �mg`(1� cos(�)):

Using

cos � = 1�
1

2
�2 + � � �

cos(� � �) = �cos(�)

the potential can be expanded around these two values of �. Dropping a constant (a di�erent

one for each case),

L �

(
m`

2

2
_�2 � mg`

2
�2; � near 0;

m`
2

2
_�2 + mg`

2
(� � �)2; � near �:

(3.2)

For other one degree-of-freedom systems, the potential can generally be expanded in the

same way, if it is smooth. Near an equilibrium of such a general system, which may as well

be taken at q = 0,

V (q) � V (0) +
1

2
V 00(0)q2:

But, the kinetic energy might very well depend on generalized position as well as generalized

velocity:

T (q; _q) =
a(q)

2
_q2;

with a(q) > 0 a function of q. This calls for another Taylor series expansion. The constant

term in the potential is essentially arbitrary and the �rst derivative vanishes at an equilib-

rium, so we must expand V to at least second order in q. For the kinetic energy, it should

be adequate to take

a(q) � a(0):

The general idea is that both q and _q are going to be `small' so that the terms with the

fewest powers of these quantities are the most important (unless the coeÆcient is zero!). So

we keep the �rst nonvanishing terms in each case.
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The approximation leaves us with a Lagrangian

L �
a

2
_q2 +

b

2
q2; (3.3)

where a > 0 and b are constants. The resulting equation of motion is

�q + !20q = 0; with !20 =
jbj

a
> 0 if b < 0 (3.4)

or

�q � �20q = 0; with �20 =
b

a
> 0; if b > 0: (3.5)

These could be combined into a single equation, but it makes sense to deal with the stable

and unstable cases separately. By making an approximation to the Lagrangian which is

quadratic in coordinates and velocities, a linear equation of motion is obtained. And the

reason that is nice is that nothing is easier to solve than a linear di�erential equation.

Question Which of these corresponds to a stable, and which to an unstable, equilibrium?

Exercise If you constructed a generic Lagrangian by making an expansion in powers of

q and _q without splitting into T and V , you might write

L = A+Bq + C _q +Dq2 +Eq _q + F _q2:

The C and E terms are a bit odd looking and not usual, but they can occur sometimes.

Compute the equation of motion resulting from this.

You are probably used to writing the solution to Equation (3.4) in the form

q(t) = A cos(!0t) +B sin(!0t);

or

q(t) = A cos(!0t� Æ);

where the angular frequency !0 (radians per second), is related to the ordinary frequency f

(cycles per second) by

!0 = 2�f:

You have to get used to the fact that both of these are called simply `frequency.' The shift

Æ of the argument of the cosine is often referred to as the phase lag of the oscillator and

accounts for the possibility that q may not reach its maximum value at t = 0.

On the other hand, you would write the general solution of Equation (3.4) as

q(t) = a+e
�0t + a�e

��0t; (3.6)

for some constants a+ and a�. This looks (and is) very di�erent, despite the fact that the

di�erential equations only di�er by a sign in one term.
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Instead of the more familiar sines and cosines, we are going to use complex exponentials

to solve Equation (3.4). Even if you've never seen it, you can verify in a few seconds that

the general solution is

q(t) = a+e
i!0t + a�e

�i!0t: (3.7)

This looks much more like Equation (3.6), but don't be fooled. The exponential of an

imaginary number always has modulus one, whereas the solution in equation (3.6) diverges

either in the distant past or the distant future (or both).

Since q(t) must be real, it is necessary that the two coeÆcients be complex conjugates,

a� = a�+:

Since for a complex number z, z + z� = 2Rez, we could write the solution as

q(t) = 2Re(a+e
i!0t):

For a+ and a� real, we recover the solution cos!0t. In general a+ = rei�, where r is the

modulus ja+j. Then

a+e
i!0t = rei(!0t+�);

and adding the complex conjugate yields

cos(!0t+ �):

That's how a phase shift of the oscillator appears in this way of writing things. Using the

complex exponentials will be especially helpful when we discuss resonance and, later on,

systems with many degrees of freedom.

3.4 The Damped Simple Harmonic Oscillator

As mentioned in the overview, damping is important in many real oscillators. Fortunately

for us, damping can be reasoably modelled without spoiling the linearity of the equation of

motion. The sort of damping force we will consider is

Fdamp = �

!0

Q
_q; 0 < Q: (4.8)

This form is not dictated by any fundamental physical laws, but rather by mathemati-

cal convenience. It is a pretty good approximation to the dissipative forces su�ered by a

body moving through a 
uid, however (look back at section 1.7). In many non-mechanical

applications it is also a good representation. In some other cases it is only qualitatively

correct.

Exercise Consider the block attached to a harmonic spring in Figure 3.2. Using the usual

formula for sliding friction, make a plot of the frictional force versus velocity, and then versus

time over a cycle or two. (Ignore the times when the block is momentarily stationary.) How

is this even remotely like the damping force we are using?
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Figure 3.2: An oscillator experiencing a dissipative force.

With the addition of the damping force, our EOM becomes

�q +
!0

Q
_q + !20q = 0: (4.9)

Question Do you think this EOM can be derived from a Lagrangian? If you try to

reverse engineer one, the exercise in the previous section may be helpful.

Since the linearity of the equation of motion equation has not been destroyed by our

tinkering, the solutions are still exponentials in the time, just as for the undamped case:

q(t) = ei�t:

The di�erence is that the \frequency" � is now complex. For, substituting into Eq. (4.9),

one gets the quadratic equation

��2 +
i

Q
�!0 + !20 = 0:

This has two roots,

�� =

"
�

�
1�

1

4Q2

�1=2

+
i

2Q

#
!0: (4.10)

Depending upon the value of Q, three very di�erent kinds of behavior can arise because

the square root changes from being real to imaginary atQ = 1=2. For 1=2 < Q, The solutions

are more-or-less oscillatory, but decay to zero at large times; this is called underdamped.

For Q < 1=2, there is no oscillation, just an exponential decay; this is called overdamped.

The borderline case, Q = 1=2 is referred to as critically damped. We are going to discuss

all three of these cases individually, but you may want to have a look at the �gures in MT

Ch. 3 or Figure 3.3 to get a feel for the solutions �rst.

Exercise Make a picture showing the values of �� in the complex plane for these three

regimes. Why is the imaginary part always positive?
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3.4.1 underdamped: Q > 1=2

In the underdamped case, the general solution of Eq. (4.9) is

q(t) =
�
a+e

i!
0
t + a�e

�i!
0
t

�
e�!0t=2Q; !0 = !0

r
1�

1

4Q2
: (4.11)

It's convenient to split �� into real and imaginary parts. The factor in parentheses is an

oscillatory function just like that for the undamped oscillator, except that the frequency is

shifted down by the damping, reaching zero at critical damping. This oscillatory part is

multiplied by an envelope function e�t=2Q decaying to zero exponentially.

Exercise Sketch a rough plot of this solution.

3.4.2 overdamped: Q < 1=2

In the overdamped case, we take

�� = i��

and write the solution as

q(t) = a+e
��+t + a�e

���t (4.12)

with

�� =
!0

2Q

h
1�

p
1� 4Q2

i
< 0: (4.13)

There's no sign of any oscillation here. It might seem that q(t) is destined to slide mono-

tonically in to zero. Surprisingly, that is not true. q(t) can have a turning point (but only

one).

3.4.3 critically damped: Q = 1=2

Finally, if Q = 1=2, the roots �� of the quadratic equation are both equal to �1. That will

yield a solution

q(t) = Ae�!0t:

Since the EOM is a second order equation, we know there must be another solution. In fact,

te�!0t also solves it.

Exercise Verify that last statement by explicit computation.

Thus, the general solution can be written as

q(t) = (C +D!0t)e
�!0t: (4.14)

I've factored an !0 out of the second constant simply so that C and D have the same

dimensions.
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3.4.4 The Meaning of Q

Obviously enough, from the expression for the dissipative force, Q is concerned with energy

dissipation, and the smaller Q the larger the force, so (one expects) the greater the rate of

energy dissipation. We will make that relationship much more precise for the underdamped

case.

Going back to the discussion just preceeding the linearized Lagrangian in Eq. (3.3), we

can identify the kinetic and potential energies of our oscillator as

T =
a

2
_q2 and V =

b

2
q2:

Now adding them to get the total energy, instead of subtracting as we did in forming L,

E =
a

2
_q2 +

b

2
q2 =

a

2

�
_q2 + !20q

2
�
:

For an underdamped oscillator we may write

q(t) = Ae�!0t=2Q cos(!0t� Æ):

There no point in carrying the phase shift Æ around; we set it to zero by choosing t = 0

appropriately. The potential energy is then

V =
a

2
!20 cos

2(!0t) e�!0t=Q;

and the kinetic energy, after a bit of algebra and the double angle formula sin 2x = sinx cosx,

turns out to be

T =
a

2

�
(!0)2 sin2(!0t) +

!20
4Q2

cos2(!0t) +
!0!

0

2Q
sin(2!0t)

�
e�!0t=Q:

Now we are going to average these over one period of oscillation, but to do that, we'll

have to assume that Q is large enough that the exponential factor doesn't change appreciably

over one period. That will allow us to leave it out of the averaging. Since sin2 !t and cos2 !t

average to 1/2 over an entire period,

Tave � Vave �
a

2
!20 e

�!0t=Q:

To get Tave to come out, it was necessary to substitute (!0)2 = !20(1 � 1=4Q2). Both the

kinetic and potential energies, averaged over a period are decaying exponentially with time,

hence so is the total energy,

E � E(0)e�!0t=Q:

Now the meaning of Q is clear:

dE

dt
= �

E

Q
Q� 0: (4.15)

Put into words, 1=Q is the fraction of energy lost in unit time. The following table gives

approximate values of Q for a variety of oscillators. As you can see, values of Q in the

hundreds are not so hard to come by.
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Some reprentative Q values�

system Q

50 g mass hanging on coil spring 25

Earth (seismic oscillations) 200

FM radio receiver 5000

tuning fork 104

Na atom (yellow spectral line) 5� 107

superconducting rf cavity 1010

Fe nucleus (gamma ray transition) 3� 1012
� from Newtonian Dynamics by R. Beirlein.

3.5 Phase Portraits

It's hard to exaggerate the value of visualizing dynamics not only in con�guration space,

but also in phase space. Unfortunately, it's also hard to exaggerate the diÆculty of doing

that with more than one degree of freedom! Fortunately that's all we have right now. Later

we'll investigate some ways to picture more complicated systems.

The con�guration and velocity of a system at any given time associates a point in phase

space with the system. This point is sometimes called a representative point, and as time

goes on it moves in phase space.1 This evolution can be visualized with a phase portrait.

Figure 3.3 shows phase portraits for an undamped an underdamped and an overdamped

SHO. The idea of a phase portrait is to show enough of the orbits to see what's going on.

The arrows indicate the direction along which the representative points move, but they

aren't really needed since you could put them back in if they accidentally got erased.

Question How? I never got around to putting arrows on the overdamped phase portrait.

Fill them in for me.

Let us temporarily agree to distinguish the velocity as a coordinate in phase space from

the velocity as the actual time derivative of position along a dynamical trajectory by denoting

the former as _q and the latter as dq=dt. Then we write

dq

dt
= _q;

d _q

dt
= f(q; _q): (5.16)

The �rst equation here is a little bit silly, in a sense, but it's helpful to make the point. The

left hand sides are the components of the velocity in phase space of a point moving along a

dynamical trajectory (not the ordinary velocity). Since every point in the phase space can

be a representative point, and the phase space velocity (Eq. 5.16) varies smoothly, it is as

if the phase space were �lled with a moving 
uid. This is a so-called static 
ow because

the 
uid velocity at a given point never changes. After a time t, the 
ow carries point

1Personally I like to confuse the representative point with the system itself, but some people seem to

think there is value in keeping the distinction.
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Figure 3.3: Phase portraits for (a) an undamped SHO, (b) an underdamped SHO with

Q = 2:0, and (c) an overdamped SHO with Q = 0:4.

x(0) = (q(0); _q(0)) into x(t) = (q(t); _q(t)). But no matter what time the system starts at

x(0), it will reach x(t) a time t later. The set of mappings which describes where all the

phase space points go after any interval of time is called a phase 
ow. We formalize that

in the following way. The point in phase space into which x is carried after time t is denoted

by2 �(x; t). The dynamical trajectory which passes through x at time t = 0 is precisely

�(x; t) and

�(x(t); t0) = �(x; t+ t0) (5.17)

is the expression of the invariance property mentioned above. We will investigate the 
uid

analogy to phase space 
ow more in chapter 6.

Exercise The phase portrait of the undamped oscillator can be drawn without explicitly

solving the equations of motion. How is that done? Why doesn't it work for the damped

oscillator?

Question By introducing an extra independent variable, _q, we were able to rewrite a

second order di�erential equation as a system of �rst order equations (5.16). Can you see

how to write even higher order di�erential equations as systems of �rst-order equations?

At the beginning of this chapter, we studied the notion of stable and unstable static

equilibria. When we look at things in phase space, there are a couple of new concepts of

stability which naturally suggest themselves. For all three phase portraits in �gure 3.3,

q = _q = 0 is a �xed point, that is a point which does not move under the time evolution.

It is an orbit consisting of a single point. Points which are close to that one move toward

it for both the damped cases. This is asymptotic stability of the �xed point. A �xed

point x0 is asymptotically stable if it has some neighborhood U such that all points in U

eventually tend to x0

x 2 U ) F (x; t)! x0 as t!1:

2The letter F is overworked, so we'll write `phi' for `phlow'.
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A neighborhood of a point x in phase space is any set which contains all points y within

Æ in both position and velocity, for some Æ > 0. In fact, the �xed point for both damped

cases is better than asymptotically stable because not just a neighborhood of it goes to the

�xed point, but the entire phase space.

The �xed point for the undamped 
ow is not asymptotically stable. Other points in the

phase plane are carried eternally round and round on ellipses and never fall in toward the

center. However, they don't get any further away either. This is a kind of stability, too,

but a somewhat weaker one. It is called Liapunov stability. A �xed point x0 is Liapunov

stable if given any neighborhood U of x0, there is another neighborhood V , possibly smaller,

such that points which start in V never escape from U :

x 2 V ) F (x; t) 2 U; for all t > 0:

For the simple case of the undamped oscillator, the neighborhoods U and V can be taken

to be identical.

3.6 The Periodically Driven SHO

Physics, like life, is made interesting by interactions. As the phase 
ow in Figure 3.3(b)

illustrates, a damped but undriven SHO is actually a pretty boring thing. All the motion

quickly damps out and then it just sits there. Since most oscillators encountered in the

world are not only damped, but also in
uenced by external forces, we'd do well to look into

that. The simplest sort of interaction between an oscillator and the rest of the world is a

pre-determined driving force F (t), which enters the equation of motion as

�q +
!

Q
_q + !20q = F (t): (6.18)

The oscillator responds to the external world, but any in
uence going the other way is

ignored. Since F (t) doesn't actually have the dimensions of a force, I will try to refer to this

as a driving term instead, so that we don't get confused. (The other terminology is quite

prevalent however.) In x3.6.1 we will consider a special, but important, kind of driving,

namely a sinusoidally varying force. Then in x3.7 we'll take up the question of arbitrary

driving forces.

Exercise How would the Lagrangian need to be modi�ed in order to get this EOM?

(You'd better do the undamped case, since that's the only one we have a Lagrangian for!)

3.6.1 Resonance

A sinusoidal driving force has the form

F (t) = F0 cos(!t+ Æ) = 2Re(Fe!t); (6.19)

where

F = jF jeiÆ : (6.20)
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Since the equation of motion is linear and all the constants are real, solving it with a complex

driving term and then taking the real part gives the same solution as results from taking

the real part of the driving term. This follows from taking the equation

�q +
!0

Q
_q + !20q = g(t);

and adding or subtracting its complex conjugate. Since it is rather simpler, we are therefore

going to actually solve the problem with

F (t) = Fe!t;

and only take the real part at the very end.

With that understanding, the equation of motion of the oscillator becomes

�q +
!

Q
_q + !20q = Fei!t: (6.21)

To solve this, you might guess

q0(t) = Aei!t;

reasoning that the oscillator has got to move with the same frequency as the driving. Insering

it into Eq. (6.21), an algebraic equation results, which you can solve for A:

A =
F

!20 � !2 + i!0!=Q
: (6.22)

Although this does yield a solution, it is a particular solution and not the general solution.

We can always add a solution of the undriven equation to q0(t) and it will still be a solution.

Generally, what should be added to the particular solution is determined by the initial

conditions. If there is any damping, this is anyway not so interesting because the undriven

solution quickly decays away, leaving just the driven response q0(t).

Unless 1=Q = 0, which is the case of no damping, the factor

R =
def A

F

which relates the amplitude of the oscillations to the amplitude of the driving is a complex

number. What is the signi�cance of R being complex in general? It means that the oscillator

is not necessarily in phase with the driving force. When the force is at its maximum, the

oscillator may be at its maximum displacement, or maybe its at zero, or maybe somewhere

else. So let's write R as

R = jRjei�: (6.23)

Then, the (real) response of the oscillator is

q(t) = Re(RFei!t) = jRjjF j cos(!t+ Æ + �): (6.24)

Clearly, the phase of R as a complex number is equal to the relative phase between the

driving and the oscillator's response. Graphs of the amplitude and phase lag of the oscillator
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Figure 3.4: The amplitude (left) and phase lag (right) of an oscillator subjected to a si-

nusoidal driving force. (`R' stands for `response') The solid curves are for Q = 2 and the

dashed, for Q = 10.
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Figure 3.5: The complex response R of a damped oscillator.
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response are shown in Fig. 3.4.

Exercise Extend the curves to ! < 0.

The striking thing about the plots is that as Q becomes very large, there is an ever

sharper peak in the amplitude of the response near ! = !0 accompanied by an ever more

sudden drop of the phase shift from 0 to ��. From Eq. (6.21), the response of an oscillator

driven precisely at its natural frequency is

R = �i
Q

!20
; ! = !0;

and this diverges as Q!1.

Question Does this mean that if we start driving a nearly undamped oscillator at its nat-

ural frequency, large amplitude motion will appear instantly ? If not, how is that reconciled

with the last equation? (Hint: check the time dependence of our driving force.)

This divergence as the damping disappears is probably not terribly surpising to you;

what might be is that the response is �nite for ! away from !0 even in the absence of

damping. When ! = !0, we say that the oscillator is being driven at resonance, and the

sharp features of the response for large Q and ! � !0 are known as resonance. You are

surely familiar with the phenomenon from pushing somebody on a swing. If all the pushes

come at the right time, which is to say in phase with the natural oscillations, then they can

reinforce each other. The amplitude of the motion builds until it is halted by the damping.

Question How does the damping make the amplitude stop growing? Does it become

stronger, and if so why?

Exercise The amplitude is not maximized precisely at resonance, but slightly o�. The

shift of the maximum goes to zero as 1=Q! 0. Compute the driving frequency which results

in maximum jRj.

Clearly, things are most interesting very close to resonance, particularly when Q is large.

So we will suppose that !=!0 does not di�er much from one, and make some appropriate

approximations. Let us write

! = !0 + Æ!:

Keeping only the �rst non-zero term in each of the real and imaginary parts, the denominator

of the complex response amplitude Eq. (6.22) becomes

!20 � !2 + i!0!=Q = !20 � (!0 + Æ!)2 + i!0(!0 + Æ!)=Q

� 2!0Æ! + i!20=Q

= 2(!0 � !) + i!20=Q:

Putting this expression back into Eq. (6.22) and multiplying through by the complex con-

jugate of the denominator,

R �
1

2!20

�
1� !=!0 � i=2Q

(1� !=!0)2 + 1=4Q2

�
: (6.25)
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t

F

Figure 3.6: A periodic forcing function

This approximate complex response amplitude is plotted in Figure 3.5. It traces out a circle

of radius Q=2!20, but it is very nearly zero except for ! very near to !0.

Exercise Try to visualize a concrete forced oscillator as the driving frequency goes

through the natural frequency. See, in your mind's eye what the plot for R shows.

3.6.2 general periodic driving: Fourier series

Periodic driving of an oscillator can take many shapes. It certainly need not be perfectly

sinusoidal. For instance, one may have a sawtooth force as in Figure 3.6. Once we have

solved the problem with a sinusoidal driving force, however, the solution with any periodic

driving is not far behind. This hinges on two facts.

The �rst is the linearity of the equation of motion. Suppose that q1(t) and q2(t) are

solutions under the driving forces F1(t) and F2(t), respectively:

�q1 +
!

Q
_q1+!

2
0q1 = F1(t);

�q2 +
!

Q
_q2+!

2
0q2 = F2(t):

Then, by adding the two equations together,

(�q1 + �q2) +
!

Q
( _q1 + _q2) + !20(q1 + q2) = F1(t) + F2(t);

you can see that q1(t) + q2(t) is a solution with driving force F1(t) + F2(t). As a result, if

we know the response to some building block forces, the response to any force which is a

superposition of those can be immediately computed.

The second fact is that any periodic driving can be written as a sum of sines and cosines,

or alternatively complex exponentials. This representation is known as a Fourier series.

Without proof, here is the way such things are handled. Let f(t) be any function of period
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T , so that f(t+ T ) = f(t). Then,

f(t) =

1X
n=�1

cne
in!t; (6.26)

where

! = 2�=T;

and the Fourier coeÆcients are

cn =
1

T

Z T

0

e�in!tf(t) dt: (6.27)

Since the driving term is certainly real, the complex conjugate of this equation shows that

c�n = c�
n
:

The complex exponentials we are using here exhaust all the sinusoidally varying functions

which have an integral number of periods over the interval T . The expansion provides

a decomposition of any periodic force into shorter and shorter wavelength components.

Roughly speaking, the very short wavelength pieces correspond to sharp features of the

original driving force. Insofar as it has no sharp features, we can reasonable expect to be

able to neglect all but a few terms of the series. The sawtooth curve has a sharp feature:

the places where it turns around. The Fourier coeÆcients for the sawtooth in the �gure is

cn =

(
A=n2; n odd

0; n even:

Exercise If you are familiar with Fourier series written in terms of sines and cosines

(as in eqs. 3.102 of MT), convince yourself that what's written here is the same thing by

combining Equations (6.26-6.27) with their complex conjugates.

3.6.3 Extended Phase Space

The undriven harmonic oscillator, damped or not, has a certain symmetry with respect to

time translations. If it has a given position and velocity at time t, its position at time

t+T does not depend upon what particular time t was. This property manifests itself in the

di�erential equation governing the system by the absence of any explicit time dependence. A

di�erential equation of that sort, and the dynamical system described by such an equation,

is called autonomous. If there is an explicit time dependence, the equation (or system)

is called nonautonomous. The latter is the case for the driven oscillator. It is no longer

enough to know, for instance, that q = _q = 0 now in order to determine the state of the

system ten minutes from now. We also need to know at what point in its cycle the driving

force is. But which cycle it is in doesn't matter. If the driving is speci�ed as a function with

a period of one hour, we only need to be able to see the minute hand of the clock (as well

as check the position and velocity) in order to predict the future evolution of the system.
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q

t=0 t=T

q

Figure 3.7: extended phase space

For a nonautonomous system, the phase space built on just q and _q is no longer adequate

for one of its major purposes. For an autonomous system, a point x in phase space is carried

by the 
ow into point �(x; t) after a time t, regardless of when it started at x. There is

precisely one orbit through each point of phase space. In order to regain it that property,

we enlarge the phase space, to what is called extended phase space. The idea here is

illustrated in Figure 3.7. We add an extra dimension corresponding to time, and it extends

through one full cycle of the driving force. Now we have what we want. A point in this

extended phase space corresponds to a position, a velocity and a point in the cycle of the

driving force. Thus, there will be only one orbit through that point. Notice that the q � _q

plane at t = T is to be identi�ed with the plane at t = 0. The extended phase space

is therefore bounded in the time direction and is more like a circle than a line segment.

However, that's hard to draw, so we just have to remember the fact. The phase space of an

autonomous system has twice as many dimensions as degrees of freedom, since each degree

of freedom brings a position and velocity (sometimes there are constraints which make this

not quite true). Since the extended phase space for a one degree of freedom system has

three dimensions, it is sometimes said to have `one and a half' degrees of freedom.

An extended phase space can be made for the undriven system, too, if we like. For

the undamped oscillator, the orbits look like helices; in case T is the natural period of the

oscillator, they are closed, going through the same point at t = T as at t = 0. For a driven

system, closed orbits are the exception, not the rule.

Exercise Try to imagine and/or sketch the orbits in extended phase space for an un-

damped SHO both undriven and driven at resonance.

3.7 Arbitrary Driving Force: Green Functions

Quite often, we are interested in a force F (t) which is zero up until some time t0, and

the solution that is wanted is one with q(t) = 0 for t < t0. Such initial conditions (and

the Green function associated with them, see below) are generally called causal, because
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t

F(t)

∆

t

Θ∆(t-s)

s

∆
1/∆

Figure 3.8:

nothing happens until the cause kicks in.

Remarkably, linearity of the driven oscillator equation allows fairly straightforward so-

lution for an arbitrary driving force! The Green function technique we will develop can be

applied to any inhomogeneous linear di�erential equation. The key is illustrated in Fig. 3.8.

Slice time up into bins of duration � centered on tn = n� for n = : : : ;�2;�1; 0; 1; 2; : : :

and approximate F (t) by 
attening it out over each of those bins. To re�ne this idea, de�ne

the square pulse of duration � and height 1=�:

��(s) =

(
1=� if �=2 � s < �=2;

0 otherwise,

Then you can approximate F (t) by F�(t), de�ned as

F�(t) =
X
n

Fn��(t� tn)� = a sum of square pulses; (7.28)

where

Fn =
1

�

Z
n-th bin

F (t) dt

is the average of F (t) over the nth bin (n�1=2)� � t < (n+1=2)�. As � becomes smaller,

the approximation becomes better. There are peculiarities to the limit �! 0, so a slightly

roundabout way of getting there is needed.

Denote the causal response to ��(t) by G�(t), so that

�G�(t) +
!

Q
_G�(t) + !20G�(t) = ��(t): (7.29)

This does not in any way depend upon F (t). The response to F� is exactly

q�(t) =
X
n

FnG�(t� tn)�: (7.30)
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The limit can be taken safely here, with the result

q(t) =

Z
1

�1

F (s)G(t� s) ds: (7.31)

G(t) is called a Green function.3 In this case, it's a causal Green function. The formula

looks nice, but it's not much use until G(t) is actually calculated. We will do that, but it

involves a digression, so to to relieve the suspense, here is the formula:

G(t) =
sin(!0t)

!0
e�!0t=2Q: (7.32)

Question What are the dimensions of G according to this formula? Is that what it should

be?

Now, to �nd G, we apply the di�erential operator d2=dt2 + (!0=Q)d=dt + !20 to both

sides of Equation (7.31). On the left-hand side, you get simply F (t), so that we ought to

have

F (t) =

Z
1

�1

�
d2

dt2
+
!0

Q

d

dt
+ !20

�
G(t� s)F (s) ds:

In other words, we want �
d2

dt2
+
!0

Q

d

dt
+ !20

�
G(t� s) = Æ(t� s); (7.33)

where Æ(t� s) is a function such thatZ
1

�1

Æ(t� s)F (s) ds = F (t)

no matter what F (t) is. But that's crazy; there's no function with that property.

3.7.1 Detour: The Dirac Delta \Function" and other Distributions

Obviously, Æ(t� s) must be zero for t� s 6= 0 else the answer would surely depend on F (s)

for values other than t. But a function which is zero everywhere but one point has a zero

integral. Actually, there really is such a thing, it is called a Dirac delta function (though it

isn't really a function), and it is given by

Æ(t) =
dH

dt
(7.34)

where

H(t) =

(
0; if t < 0

1; if t � 0
(7.35)

3After the Irish mathematician George Green of Green's Theorem fame.
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is the Heaviside step function. The meaning of the di�erentiation here requires some eluci-

dation.

To see what it's all about, compute

J = �

Z
1

�1

H(t)
df(t)

dt
dt: (7.36)

In order that this make sense, we insist that f be once di�erentiable and also that it be

identically zero outside of some bounded region. (This property is referred to as f having

bounded support) Then,

J = f(0);

as you can check for yourself. We can integrate by parts | almost. The fact that f is zero

for large jtj means that there are no surface terms and we would have

J =

Z
1

�1

dH(t)

dt
f(t) dt;

except for the fact that the derivative of the step function does not exist at t = 0. If we

promise to use it only inside integrals like that however, we may perfectly well de�ne the

derivative dH=dt by the right-hand side of Eq. (7.36). That is exactly what we shall do,

with the aim of being able to use our old rules of di�erentiation on a wider class of objects.

For any function h whatever, whether smooth or with a discontinuity like the step function,

we will de�ne dh=dt \in the sense of distributions" byZ
dh(t)

dt
f(t) dt = �

Z
h(t)

df(t)

dt
dt; (7.37)

where f(t) is any di�erentiable function of bounded support. This was already true for

di�erentiable functions h, so it does not con
ict with the original notion of derivative, but

extends it. As stated, this does not tell us what dh=dt means, standing alone, but only if it is

inside an integral. It turns out to be the case that if h is actually a function with continuous

derivative, this equation does determine dh=dt completely. But it is probably not obvious,

and I won't prove it. But it also allows us to assign a meaning to the derivatives of things

which didn't have them under the old, narrow de�nition.

Now, by a change of variables (in the �rst and last steps) we may compute

d

dt

Z
H(t�s)f(s) ds = �

d

dt

Z
H(s)f(t�s) ds =

Z
H(s)

df

dt
(t�s) ds = �

Z
H(s)

df

ds
(t�s) ds

by the old rules of the game. The new de�nition makes this last integral equal toZ
dH(s)

ds
f(t� s) ds;

and with a �nal change of variable, the beginning and end of this chain of equations reads

d

dt

Z
H(t� s)f(s) ds =

Z
dH

dt
(t� s)f(s) ds: (7.38)
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So, we can take the derivative under the integral sign just as if H were a well-behaved

function.

That is how the formula

Æ(t) =
dH

dt

is to be understood. At an intuitive level, it makes some sense. Clearly the derivative of

H(t) is zero away from t = 0 since H is 
at in those regions. Since it takes a �nite jump

from zero to one over an in�nitesimal interval at t = 0, dH=dt is somehow in�nite at zero

and the properties we've ascribed to this object do not seem so crazy. That is the basic idea,

but some work (which we just sketched) is required to make that vague feeling hold water.

Now that the delta function is in hand, we may go further and de�ne its derivative by

precisely the same trick:Z
dÆ(t)

dt
f(t) dt = �

Z
Æ(t)

df(t)

dt
dt = �

df

dt

���
t=0

:

Question Do you see the pattern? Try to continue it to get d2Æ=dt2, etc.

The delta function and its derivatives are examples of distributions or generalized

functions as they are also known (the latter term being that traditionally favored in the

Russian literature). We'll discuss these things brie
y before getting back to our Green

function.

Given a function f(x), we have been discussing the procedure which takes as input

another function g(x) and gives as output the number

If [g] =

Z
1

�1

f(x)g(x) dx: (7.39)

We've bumped into things like this before: If [�] is a functional. But it has a special property

| it is linear. To say that I is a linear functional means that

I [g + h] = I [g] + I [h];

I [�g] = �I [g];

where � is a number (real or complex). A functional with this linearity property is called a

distribution. Clearly,

g 7!

Z
Æ(t)g(t) dt = g(0):

is another linear functional. It is a theorem that any generalized function can be written as

a sum of ordinary functions, along with delta functions and their derivatives. The practical

usefulness of these things stems largely from the fact that they can be manipulated much

as ordinary functions and allow us to di�erentiate with wild abandon when it would be

forbidden under a strict function interpretation.
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G dG
dt

d2G
dt2

Figure 3.9: The behavior of the Green function G(t) and its derivatives very near t = 0. G

and dG=dt are accurately portrayed, but the picture of d2=dt2 must be taken with a grain

of salt. It's not really a function, but inside integrals behaves very like functions of the

depicted shape.

3.7.2 Back to Green Functions

At long last, we return to our Green function and see why this is of use. First, you should

notice that the Green function was designed from the very beginning to sit inside an integral

with a forcing function. So, the derivatives we took in Eq. (7.33) were in the distribution

sense whether we realized it or not.

Equation (7.33) tells us the following things:

� Away from t = 0, G(t) satis�es the homogeneous oscillator equation.

� At zero, G(t) has a kink, so that its derivative _G can have a step-function discontinuity,

so that its derivative �G contains a delta function of unit strength.

The shape of the function G(t) is shown in �gure 3.9. Life is not so diÆcult. G(t) is zero

for t < 0. All we need to do is �nd a solution to the oscillator equation for t � 0 which is

zero at t = 0 but has slope one there. Since the general solution is

G(t) = (a+e
i!

0
t + a�e

�i!
0
t)e�!0t=2Q;

with derivative

_G(t) =

��
i!0 �

!0

2Q

�
a+e

i!
0
t +

�
�i!0 �

!0

2Q

�
a�e

�i!
0
t

�
e�!0t=2Q;

a very short calculation allows us to solve for a+ and a� with the result

a� = �a+ =
1

2i!0
: (7.40)

Whence �nally, the formula in Eq. (7.32).

Exercise Finish that calculation. Find the coeÆcients a+ and a� so that G(t) satis�es

the homogeneous equation away from t = 0, has G(0+) = G(0�) = 0 and dG(0+)=dt =
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Θ1/2 Θ1/4

?

Figure 3.10: A delta sequence

1 + dG(0�)=dt = 1. (The argument 0� means the limit as t ! 0 from above (+) or below

(�) side.

Precisely the same procedure can be applied to solve inhomogeneous linear di�erential

equations of any order, if we have solutions of the homogeneous equation. For instance,

consider

cn(x)
dny

dxn
+ cn�1(x)

dn�1y

dxn�1
: : :+ c0(x)y = f(x): (7.41)

This is solved by

y(x) =

Z
1

�1

G(x � z)f(z) dz;

where the Green function G(�) satis�es the equation

cn(x)
dnG

dxn
+ cn�1(x)

dn�1G

dxn�1
: : :+ c0(x)G = Æ(x):

With the solutions to the homogeneous equation, G can be found very easily. This can

be quite useful if you have many (or an unknown) f 's for which you wish to solve the

equation (7.41). That Green function is constructed by pasting together a solution to the

homogeneous equation in the region t � 0 and one in the region t � 0. The derivatives for

the left and right hand pieces agree up to dn�2G=dxn�2, but there is a discontinuity of the

(n� 1)-st derivative of size 1=cn(0).

We have basically de�ned the delta function as the derivative of a step. There are other

ways to get at it. In particular, it can be approximated by genuine functions. A sequence of

better and better approximations to a delta function is called a delta-sequence. An example

is shown in Figure 3.10 The functions �� are our friends from the previous subsection. If

f(x) is a smooth function Z
��(x)f(x) dx � f(0);
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and the smaller �, the closer this will be to an equality. That is the sense in which they

approximate a delta function. There are other delta-sequences. Clearly the precise shape

is not important. The only thing which matters is that the region where they're nonzero

becomes more and more tightly concentrated around zero and the total area under each is

one. Sometimes, when dealing with a very sharp spiky signal, it is useful to pretend that it

is a delta function so as to avoid worrying about the precise shape. That is an application

of this approximation idea.

Exercise Sketch some more delta-sequences.

3.7.3 Green function for the Laplacian

To illustrate another use of distributions, and get a useful result in the bargain, we will

establish the formula

r
2

�
1

r

�
= 4�Æ3(r): (7.42)

This provides another proof of the Gauss 
ux theorem and the Poisson equation. First, it

would help to explain what Æ3(r) means. This is a three-dimensional version of the delta

function. If it is put inside an integral over volume with a smooth function g, the integral

evaluates to the value of g at the origin:Z
Æ3(r) g(r)d3r = g(0):

We could also write Æ3(r) = Æ(x)Æ(y)Æ(z). Here is how it proves the Poisson equation. The

gravitational potential due to a distribution of mass �(r) is

�(r) = �G

Z
�(r0)

jr� r0j
d3r0:

Then

r
2�(r) = �G

Z �
r
2 1

jr� r0j

�
�(r0) d3r0 = �G

Z
4�Æ3(r� r

0)�(r0) d3r0:

Voila!

Away from r = 0, it is straightforward to calculate r2(r�1), and the result is zero.

Exercise Perform that computation.

At r = 0 it cannot be done because the derivatives don't exist there. However, knowing

that r(r�1) is zero everywhere else, it is easy to �nd its value at the origin. We just computeZ
r
2

�
1

r

�
g(r) d3r;

where now the factor r2(r�1) must be interpreted as a distribution because it doesn't exist

as an old-fashioned function at the origin. Since that factor is at any rate zero away from
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L

C R

E

Figure 3.11: A series LRC circuit containing capacitance C, resistance R and inductance L,

driven by an emf E

r we might just as well take g to be one for r < 1 and zero for r > 1, like a Heaviside step

function. Then the integral becomes

� � � =

Z
r<1

r
2

�
1

r

�
d3r;

and an application of Green's theorem yields

� � � =

Z
r=1

r

�
1

r

�
� n̂ dA:

Since r(1=r) = �r̂=r2, and the surface area of the unit sphere is 4�, the value of this integral

is �4�.

Admission: The use of Green's theorem is justi�able, but it's slightly sleazy.

3.8 LRC Circuits

A nice example of a one degree of freedom linear oscillator is provided by series LRC circuits,

such as the one depicted in Figure 3.11.

As you no doubt recall, an inductor is essentially a coil of wire. Current going through

it produces a magnetic �eld. If the current is changing, so is the magnetic 
ux through

the center of the coil and this results in an emf according to Faraday's Law, which is

proportional to dI=dt, the proportionality constant L being a property of the device and

called inductance. The voltage drop across the resistor is proportional to the current through

it and the resistance, according to Ohm's law, V = IR. Finally, the voltage drop across the

capacitor is proportional to the charge q on one of the capacitor plates, the proportionality

constant being de�ned as the capacitance C of the device. In summary, the voltage drops
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across these three circuit elements is

VC =
q

C
; VL = L

dI

dt
; VR = RI: (8.43)

Also, since charge cannot go across the capacitor, nor can it dissapear into nothing, the

current through the inductor and resistor must come from a changing charge on the capacitor

plate, so that the current through the circuit is related to that charge by

I =
dq

dt
: (8.44)

Finally, if the circuit is driven by a voltage source E(t), the total voltage drop across all

the rest of the circuit must equal E(t). This gives us the following equation of motion for

the charge on the capacitor:

L�q +R _q +
q

C
= E(t): (8.45)

This is precisely the same as that of a driven damped oscillator. By some fortuitous accident,

the letter q plays the same rôle. All the results we worked out for such an oscillator therefore

carry over immediately, though the interpretations can be slightly di�erent. For example

the natural frequency of this oscillatory circuit is

!0 =

r
1

LC
; (8.46)

and the Q factor (not to be confused with the charge!) is

Q =

�
L

C

�1=2
1

R
: (8.47)

More complicated circuits, with various capacitances in parallel are oscillators with many

degrees of freedom, each capacitive charge providing one degree of freedom.

3.9 Notes

In large measure, this chapter runs a parallel course to that of chapter 3 in MT. In contrast

to MT, the discussion of Green functions given here requires the digestion of some new

mathematical ideas, but I think (hope) it is more transparent in the long run.


