
Chapter 4

From 1-d Motion to the Kepler

Problem

4.1 Overview

In the previous chapter we studied a very restricted class of motion with one degree

of freedom, which was linearized dynamics around �xed points. There are many

situations to which that is applicable as-is. There are others to which it makes a

good �rst approximation. Actually, energy-conserving dynamics with one degree

of freedom is simple enough that the simpli�cation a�orded by linearization isn't

essential to �nding solutions. That's the topic of this chapter. The Kepler problem is

tied up with this because it's very nearly one degree of freedom. In the next chapter

we'll start looking at more degrees of freedom, starting with linearized dynamics

again, as we did for one degree of freedom.

Section 4.2 treats the general problem of one-dimensional motion, reducing it to

a `simple' exercise in integration. This is illustrated on one of our favorite examples,

the plane pendulum. Then, the problem of two bodies interacting through a central

force is taken up in section 4.3. Regardless of the force law involved, this problem

can be reduced to two degrees of freedom by exploiting conservation laws. It is

equivalent to a problem of a single particle going around a �xed center of force.

We'll see that there is generally no reason to expect the orbits to be closed. (See

�gure 4.7 if that's obscure.) For the special case of an inverse square law, the orbits

are closed. Since you are familiar with the fact that planetary orbits are ellipses,

you are probably not as surprised by this as you should be. Anyway, in section 4.4,

we'll derive Kepler's laws and work out explicit formulas for the orbits in terms of

energy and angular momentum.
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Figure 4.1: Turning points in a potential for one-dimensional motion.

4.2 Motion in One Dimension

In this section, we're going to see how conservative one-dimensional motion is, in a

certain sense, a completely soluble problem. `Conservative' means energy conserving

as a general rule. One might better say `Hamiltonian,' but since that won't make

sense to you for a while, we'll forebear. The idea is most cleanly exhibited by thinking

about motion of a particle along a line. Other cases require some modi�cation of

the formulas, but the ideas are precisely the same.

4.2.1 the general idea

A great deal can be learned about the motion from simply looking at a plot of the

potential. An example appears as Figure 4.1. The energy of the particle is indicated

by the dashed line. Since the kinetic energy must be positive, the particle can only

be in locations where the potential is below that line. The points where the energy

level intersects the graph of V are then turning points. For the indicated energy,

the particle can oscillate back and forth forever between the points B and C.

Question There is another orbit with that same energy, and it has A as a turning

point. What does it look like?

This simple analysis of a picture has told us quite a bit for the e�ort invested,

and demonstrates the power of the energy concept. But, something a little more

quantitative would be nice. The total energy of our particle is

E = T + V =
m

2
_x2 + V (x): (2.1)

Question The additional complication which could arise (with a non-Cartesian
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coordinate) is in the kinetic energy term. What can happen?

Now, you can solve the energy equation for _x to get

dx

dt
= �

p
T = �

r
2

m
(E � V (x)): (2.2)

This can be immediately integrated, yielding

t =

Z
x(t)

x(0)

jdx0jq
2
m
[E � V (x0)]

: (2.3)

This yields t as a function of x, kind of a strange thing, but it be inverted to �nd

x(t). By `immediately' I simply mean that we can write that integral down right

away. Rendering a problem into this form of one or more single variable integrals

goes by the quaint and musty sounding name of reduction to quadratures.1 This

certainly does not mean that we can express the integrals in closed form. They may

need to be evaluated numerically, but that is something which can be done quickly

and accurately by computer.

Some care is needed in interpreting equation (2.3). Since the motion under

consideration is periodic, x is not a single-valued function of t, so the integral cannot

be generally valid as it stands. That is not hard to patch up, but there is no need

{ if you've got x(t) over half a period (period = �), you've got it for all time. The

second half-period is the �rst in reverse and then x(t+ �) = x(t). For instance, for

the potential in �gure 4.1, x(t) might look like �gure 4.2, we could get everything we

1I think I saw a quadrature once, but that was at night and it 
ew away quickly, so I'm not

really sure.
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need from the heavily shaded part of the graph. Integrating over this whole range

gives half the period:

�

2
=

Z turning pt 2

turning pt 1

jdx0jq
2
m
[E � V (x0)]

: (2.4)

Exercise Compute t(x) and then x(t) for the simple harmonic oscillator by the

method presented here. Compare to that of the previous chapter.

Question Sometimes people compare one-dimensional motion in a potential V (x)

to a particle sliding frictionlessly on a landscape having a height pro�le looking just

like the graph of V (x). What is the di�erence between these two situations?

4.2.2 phase space view: plane pendulum again

The ordinary plane pendulum is a system with one degree of freedom. It's lineariza-

tion was discussed toward the beginning of Chapter 3, where there is a plot of the

potential energy. Its total energy

E =
m`2

2
_�2 +mg`(1� cos �); (2.5)

has precisely the form discussed a bit earlier, even though � is not a Cartesian

coordinate. As a result, the method presented there can be used to determine the

motion. We will come back to the problem of �nding the period by that method

shortly. First, I want to draw more pictures.

The picture I want to draw is Figure 4.3, which is the phase portrait of the plane

pendulum. Recall that precisely one orbit passes through each point of phase space.

The phase portrait depicts these orbits, though of course you can't actually draw

them all.

To obtain the orbits, we should in principle be obliged to solve the equation of

motion,

�� = �g
`
sin �; (2.6)

which can be derived from the Lagrangian

L =
m`2

2
_�2 �mg`(1 � cos �): (2.7)
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Figure 4.3: Energy isosurfaces in the phase plane of the ordinary pendulum. These

are also the orbits.

In order to better express the spirit of the phase space picture, we'll change

notation a little. The phase space has coordinates � and _�. The (second order)

equation of motion can be rewritten as the pair of �rst order equations

d�

dt
= _�

d _�

dt
= �g

`
sin �: (2.8)

In order to �nd the orbits, these need to be integrated. But that's not how

Figure 4.3 was really made. What's actually shown there are surfaces of constant

energy, according to Eq. (2.5). The two are the same for one degree of freedom, and

only in that case. In general, the set of points in phase space having a given value of

energy is a surface in phase space having dimension one less than the original phase

space. This is called an energy isosurface, an energy surface, or sometimes an

energy shell. You can think of the phase space as being �lled out with nested

energy surfaces like the layers of an onion. With one degree of freedom, the energy

surfaces are curves. In that case, there is no room on the energy surface for an

orbit to wander. So, the two notions must coincide. With more degrees of freedom,

specifying just the energy does not tie everything down in that way.

To be quite precise, an energy surface in a one-dimensional phase space can

consist of more than one orbit. This occurs for the pendulum in fact. The low

energy orbits are oscillatory. Those are the ones looking like circles or ellipses in
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the �gure. The high energy orbits correspond to a pendulum with so much energy

that it spins round and round the support. But it can spin around in two di�erent

directions, so at these high energies, there are two orbits with the same energy.

Finally, there are three special orbits. Suppose the pendulum is swinging clock-

wise and goes through � = 0 at time zero, and that its total energy is equal to the

potential energy at � = �. Then, it will approach � = � in the distant future, but it

will never quite make it. If you extrapolate its motion into the past, you �nd that

� ! �� as t ! �1. It could also go in the opposite direction. These two orbits

are shown on the �gure as the curves which just touch � = ��, _� = 0. Finally, the

single point � = �, _� = 0 is an orbit.

Question How can the single point (�; 0) be an orbit? Besides, even if it is, isn't

there another at (��; 0)?

Exercise Draw the phase portrait for the potential in Figure 4.1.

4.2.3 the period of the pendulum

Now come back to the problem of computing the period by the methods of section

4.2.1. The period of a simple harmonic oscillator is independent of its amplitude.

This follows directly from linearity of the equation of motion. The period of a real

pendulum will start to deviate from its small oscillation period when the amplitude

grows large enough for it to realize that the potential is not really harmonic. In

�gure 4.3 that corresponds to the energy at which the orbits no longer look quite

circular.

Question Should the period be shorter or longer for larger amplitudes?

First, we'll rewrite the potential by means of a double angle formula,

1� cos � = 2 sin2(�=2):

Then,
m

2
`2 _�2 = E �mg`[2 sin2(�=2)]:

The frequency of oscillation for small vibrations of the pendulum is

!2
0 =

g

`
: (2.9)

Let's clean things up a bit by using the inverse of this as our unit of time, so that a

new dimensionless time variable is t:

t =
def

!0t)
d�

dt
= !�1

0
_�;
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and a dimensionless energy is

E =
def E

mg`
:

This gives (conservation of energy)

d�

dt
= �

s
2

�
E � 2 sin2

�
�

2

��
: (2.10)

Finally, the pendulum's turning point �0 corresponds to _� = 0 (all the energy is

potential at that point!):

2 sin2
�0

2
= E =

E

mg`
: (2.11)

In one quarter-period, the pendulum swings from � = 0 to � = �0, so with

� = !0� ,

�

4
=

Z
�0

0

dt

d�
d� =

Z
�0

0

d�

2
p
sin2(�0=2) � sin2(�=2)

:

To handle this dreadful looking thing, the clever change of variables

sin� =
sin(�=2)

sin(�0=2)
(2.12)

comes in very handy. Since the right hand side ranges from �1 to 1, this makes

sense. That reduces the quarter-period equation to

�

4
=

Z
�0

0

d�

2 sin(�0=2)
p
1� sin2 �

: (2.13)

Of course we've no intention of leaving it like this. A couple of side computations

are needed to make substitutions. Di�erentiating the change of variable equation,

d�

2
cos

�
�

2

�
= sin

�
�0

2

�
cos � d�

Also from that formula,

cos(�=2) =

q
1� sin2(�0=2) sin

2 �:

Combining these last two,

d�

2 sin(�0=2)
=

�
1� sin2

�
�0

2

�
sin2 �

�
�1=2

cos � d�:
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Now, stuÆng it all into equation (2.13),

�

4
=

Z
�=2

0

�
1� sin2

�
�0

2

�
sin2 �

�
�1=2

d�: (2.14)

At �rst glance we don't seem to be much better o�, but this allows a systematic

expansion in sin2(�0=2). This is a sensible expansion parameter because it goes to

zero with the amplitude. Thus,

�

4
=

Z
�=2

0

�
1 +

1

2
sin2

�
�0

2

�
sin2 � + � � �

�
d�: (2.15)

The nice thing about this expression is that the integrals this entails are all very

easy, since they are just powers of sin(�=2), and you can churn out terms till the

cows come home. Let's just do one. The result is

�

2�
� 1 +

1

4
sin2

�0

2
: (2.16)

Recall that in the units we're using, the small oscillation period is 2�. This �rst

correction indicates an increase of the period at higher amplitudes. Was your answer

to the Question correct?

Exercise Work out the two terms in equation (2.16).

4.3 Two Particles Moving in a Central Force Field

A force exerted by one body on another which acts along the vector joining the

two is called a central force. According to the discussion in section 1.6, a central

force can be derived from a potential V (r) depending upon only the distance r

between the two bodies. In this section we will consider the general problem of

two particles interacting via a central force. The very important special case of an

inverse square force is taken up in the next section. Each of the particles has three

degrees of freedom, making a total of six, so the phase space is twelve dimensional.

We have seen how conservation of energy can be used to �nd subspaces on which the

motion takes place, reducing problems with one degree of freedom to child's play.

Much more cutting down is needed before a tractable problem is obtained, so more

constants of the motion will have to be exploited. The idea is the same though.

Each constant of the motion reduces by one the dimension of the space on which

the motion takes place.
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4.3.1 Reduction

The Langrangian for a pair of particles with masses m1 and m2 interacting through

a central force is then

L =
m1

2
j _r1j2 +

m1

2
j _r2j2 � V (r): (3.17)

The pair of particles is a six degree-of-freedom system, so that the phase space has

twelve dimensions. Fortunately, things can be cut down considerably. By system-

atically exploiting conservation principles, we can reduce the number of \e�ective"

degrees of freedom to two, regardless of the form of V (r). For the special case

of an inverse-square law, the problem magically reduces even further, to only one

degree-of-freedom.

(1) Conservation of P

The �rst conservation principle we'll use is that of total momentum P, which follows

from translation invariance of the Lagrangian. To exploit this, we split o� the center

of mass motion. Write

r1 = R+
m2

M
r

r2 = R� m1

M
r: (3.18)

Then, substitute into Eq. (3.17), do some simpli�cation, and wind up with the

Lagrangian expressed as

L =
M

2
_R2 +

�

2
_r2 � V (r); (3.19)

with the reduced mass

� =
m1m2

m1 +m2
:

Now R is a cyclic coordinate (or three), so it's equation of motion reduces to

dP

dt
= 0;

where P is the total momentum of the system. Since the center of mass motion has

been split o� and is doing its own thing (which is not very much), We have reduced

the problem to the three degrees of freedom comprising r.
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(2) Conservation of L

Total angular momentum is also conserved. Via Noether's theorem, this conservation

law is related to invariance of the Lagrangian under identical rotations of both r1
and r2, or equivalently of R and r. The angular momentum for this system is

L = R�P+ �r� _r: (3.20)

In fact, there is a bigger invariance. The Lagrangian is invariant under rotating R

alone, or r alone. This means that

LCM = R�P

and

Linternal = �r� _r

are separately conserved. This conclusion can be reached by more pedestrian argu-

ments, as follows:
dLCM

dt
= _R�P+R� _P;

and each term on the right hand side is zero (but for di�erent reasons). So, the �rst

term on the right hand side of equation (3.20) is constant. Since we know the left

hand side is also constant, the remaining term must be as well.

In fact, we could have avoided some of this argumentation by simply deciding

to work in the center of mass frame. Then R = P = 0 and we simply drop those

terms. We'll do that now and write

L =
�

2
_r2 � V (r): (3.21)

Since

L = �r� _r

is constant, r and _r de�ne some plane which is not changing with time (see �gure

4.4). Choose coordinates so that L is oriented along ẑ and use polar coordinates in

the x-y plane, so that r = (r cos �)êx + (r sin �)êy. This reduces the Lagrangian to

L =
�

2

�
_r2 + r2 _�2

�
� V (r): (3.22)

How many degrees of freedom are we down to? Two: r and �. But the motion

is con�ned to a three dimensional subspace of phase space. By choosing coordinates

as we have, L is known to be in the êz direction, so just write

L = `êz: (3.23)
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Figure 4.4: The separation vector and momentum in the center of mass frame de�ne

an invariant plane.

Then ` is the generalized momentum associated with �:

` =
@L

@ _�
= �r2 _� = constant: (3.24)

The constancy of ` involves one coordinate (r) and one generalized velocity ( _�).

Thus it does not eliminate a degree of freedom, but there are surfaces in the four-

dimensional (r; �; _r; _�) phase space to which the orbits are con�ned. This is similar

to what happened with energy conservation for the plane pendulum.

(3) Conservation of E

Speaking of energy, that is the �nal conserved quantity we can exploit. This conser-

vation law is associated with the fact that the Lagrangian does not have any explicit

dependence on the time. The kinetic energy of the two-particle system is a sum of a

term arising from center-of-mass motion and a term from the relative motion. Since

we are working in the center of mass frame, the �rst of these has been eliminated,

leaving

E =
�

2
j _rj2 + V (r) =

�

2
_r2 +

`2

2�r2
+ V (r): (3.25)

It turns out to be convenient to combine these last two terms by de�ning

Ve�(r) =
def `2

2�r2
+ V (r): (3.26)
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Figure 4.5: The e�ective potential (solid curve) for the radial motion and the pieces

of which it is composed. The divergence in Ve� at small r due to the angular

momentum term is called a centrifugal barrier

The point of this is that the motion looks like that of a particle moving in one

cartesian dimension subject to precisely this potential. In fact,

E =
�

2
_r2 + Ve�(r); (3.27)

and solving for _r,

dt =
drq

2
�
(E � Ve�)

: (3.28)

Also, from Eq. (3.22), the equation of motion for r is

��r +
dVe�

dr
= 0: (3.29)

So it really does look like what's in section 4.2.1. Once equation (3.28) has been

solved for r(t), conservation of L allows d�=dt to be found:

_�(t) =
`

�r(t)2
:
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Alternatively, this equation can be used to elimintate t from Eq. (3.28), resulting in

an equation for the orbit r(�),

dr

d�
=

r2

`

p
2�(E � Ve�(r)); (3.30)

or

�(r1)� �(r2) =

Z
r2

r1

`=r0
2
drp

2�(E � Ve�(r0))
: (3.31)

The e�ective potential for the radial motion con�nes the orbit to the annular

region between rmin and rmax as depicted in Figure 4.6. r bounces back and forth

in a perfectly periodic fashion. Meanwhile, � advances at a rate which varies with

r. Points at which the orbit reaches rmin are apocenters and those at which it

reaches rmax are pericenters. If you know the greek name for whatever the body

is orbiting, the socially correct thing to do is to replace `center' by that, e.g. for the

sun, `apohelion' and `perihelion', for the earth, `apogee' and `perigee.'

At any rate, a half cycle from apocenter to pericenter is enough to tell the whole

story (just as in section 4.2.1). Between those two points, � advances by an angle

� =

Z
rmax

rmin

`=r2 drp
2�(E � Ve�(r))

: (3.32)

The angle of advance over a complete cycle is twice this.

Now, if the orbit is going to close on itself, there has got to be some number of

radial periods during which the angle of advance of � is a multiple of 2�. In other

words,

Closure of the orbit , �=2� is a rational number.

In general, we've no right to expect that condition to hold. It's really remarkable

that it is true for an inverse square force, and it's to that problem that we now turn

attention.

Exercise Draw some closed and non-closed orbits.

That is as far as we can go with a generic central force. But it's a considerable

reduction! We have found that the motion is actually con�ned to a two-dimensional

surface in our original twelve-dimensional phase space.

93



rmin rmax

Figure 4.6: The e�ective potential determines a minimum and maximum radius,

depending upon E and `, between which the orbit must remain.

Figure 4.7: The orbit on the left closes after four periods of �. The one on the right

looks as though it may never do so.
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4.4 The Kepler Problem

4.4.1 Kepler's Laws: historical prelude

In 1601 Johannes Kepler set about the task of analyzing the orbit of Mars. He was

armed with the logbooks of Tycho Brahe, containing by far the most accurate and

painstaking measurements of planetary postions achieved up to that time. Would

he even have started if he had known it would take �ve years? In 1609, Astronomia

Nova was published, and in it were statements of what have since become known as

Kepler's �rst and second laws of planetary motion. The third followed some years

later. Here are

Kepler's Laws of Planetary Motion

1. All planetary orbits are ellipses, with the Sun at one

focus.

2. The vector joining the Sun to a planet sweeps out

equal areas in equal times.

3. The square of the period of a planet is proportional

to the cube of its mean distance to the sun.

Three quarters of a century later, in 1684, notions about gravity and possible

forms for its dependence on distance were starting to form in the minds of several

people. Sir Christopher Wren challenged Robert Hooke and Edmond Halley to prove

that an inverse-square force law would lead to Kepler's �rst law, and he o�ered a

small prize (worth 40 shillings!) to the one who could do it �rst. Halley happened

to mention the problem to Newton. Here is DeMoivre's account of the encounter.

After they had been some time together, the Dr. [Halley] asked him

what he thought the curve would be that would be described by the

planets supposing the force of attraction towards the sun to be recipro-

cal to the square of their distance from it. Sir Isaac replied immediately

that it would be an ellipsis. The Doctor, struck with joy and amaze-

ment, asked him how he knew it. Why, saith he, I have calculated it.

Whereupon Dr. Halley asked him for his calculation without any further

delay. Sir Isaac looked among his papers but could not �nd it, but he

promised him to renew it and then to send it him. Sir Isaac, in order

to make good his promise, fell to work again, but he could not come

to that conclusion which he thought he had before examined with care.

However, he attempted a new way which, though longer than the �rst,
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Figure 4.8: Some standard notation for ellipses. The semimajor axis (i.e., half

the long axis) is a and the semiminor axis is b. The heavy dots indicate the foci.

The distance from the center of the ellipse to either focus is �a, where � is the

eccentricity.

brought him again to his former conclusion. Then he examined carefully

what might be the reason why the calculation he had undertaken before

did not prove right, and he found that, having drawn an ellipsis coarsely

with his own hand, he had drawn the two axes of the curve, instead of

drawing two diameters somewhat inclined to one another, whereby he

might have �xed his imagination to any two conjugate diameters, which

was requisite he should do. That being perceived, he made both his

calculations agree together.

Three years later, in 1687, Newton's Principia Mathematica was published. High

time, as he'd been sitting on many of the results for nearly twenty years. It set

forth the basic principles of mechanics, the solution of the Kepler problem and the

foundations of modern celestial mechanics, and an excellent recipe for chocolate

cake. Unfortunately it was written in latin so it never made it onto the bestseller

list.

4.4.2 �nding the orbits: the u = 1=r trick

The inverse-square central force, of which gravity is a prime example, is a very

special one. In this section, the problem of motion in such a potential is completely
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solved. The potential for such a force is

V (r) = �k
r
: (4.33)

The sign is chosen so that k > 0 corresponds to an attractive interaction, the case

usually of interest. For gravity, k = GMm. Inserting this into the earlier result, Eq.

(3.25) for the energy,

E =
�

2
_r2 +

`2

2�r2
� k

r
: (4.34)

Everything we've done up to now has been very systematic. Further progress

relies on a trick. For no clear reason, we make the substitution

u =
1

r
: (4.35)

EOM of r:

Using this, we rewrite the expression for E with u and � instead of r and t. That

requires the relations

_r = � _u

u2

_u =
du

d�
_� (4.36)

_� =
`

�
u2

with the result

E =
`2

2�

"�
du

d�

�2

+ u2

#
� ku: (4.37)

Exercise Check all those things. It's straightforward algebra.

It's not yet clear what has been gained by this. But E is a constant of the

motion, so

dE

d�
= 0; (4.38)

which implies

d2u

d�2
+ u� �k

`2
= 0: (4.39)
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Now we have something. This is the equation for a an undamped simple harmonic

oscillator with constant driving! We studied those to death in the last chapter, so

the solution is very easy. With the abbreviation

� =
`2

�k
; (4.40)

and choosing the direction � = 0 right, we can write

u =
1

�
(1 + � cos �) : (4.41)

The constant of integration � needs to be related to physical properties of the current

problem. � is found by substituting back into the expression for the energy, with the

result

1� �2 = �2E`2

�k2
: (4.42)

Kepler 1:

Finally, putting it back in terms of r,

�

r
= 1 + � cos �: (4.43)

Though you may not recognize it, this is the formula for an ellipse of eccentricity �

with one focus at the origin. The amazing thing is that the orbits are closed! We

have derived Kepler's �rst law.

Kepler 2:

Kepler's 2nd law holds for any central force, and we could have proved it in the

previous section. If the planet is at a radius of r and the angle � changes by a teensy

bit Æ�, the area swept out is a triangle with a base of r Æ� and an altitude of r, giving

an area (r Æ�)(r)=2. (See �gure 4.9.) Dividing this by the time Æ�= _� required for

that motion,

d

dt
Area =

r2 _�

2
=

`

�
: (4.44)

Kepler's 2nd Law is therefore a consequence of conservation of angular momentum,

which holds for any central force.

Kepler 3:

A little bit of algebra, using Figure 4.8 gets a formula for the semimajor axis of

the elliptical orbit in terms of energy and force constant k:

a = semimajor axis = � k

2E
: (4.45)
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dθ
r

r

dr

shaded
area  = 12 (r)(r dθ)

Figure 4.9: Area is swept out by the radius vector at a constant rate for any central

force. The area of the unshaded triangle can be thrown away because it is second

order in di�erentials, being proportional to dr d�.

Using the formula in the �gure to get the semiminor axis and the fact that an ellipse

has area �ab, and a bit more scratch paper,

Area =
�`kp
8jEj3�

: (4.46)

Oops. We want to relate period to mean distance, but we've got a relation between

area and energy. I'll leave it to you.

Exercise Finish proving Kepler's 3rd Law. Change area for semimajor axis, and

area for period (K2). Also notice that mean distance is proportional to semimajor

axis though you may not know the proportionality.

4.5 Notes
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