
Chapter 7

Non-inertial Reference Frames

Absolute space, in its own nature, without relation to anything ex-

ternal, remains always similar and immovable. Absolute, true and math-

ematical time, of itself, and from its own nature, 
ows equably without

relation to anything external.

-Isaac Newton

7.1 Overview

In freshman physics we are warned always to work in an inertial reference frame.

Only then can Newton's 2nd Law be reliably applied. But there are certainly times

when a non-inertial frame, particularly a rotating one, looks like a very good thing

to use. One obvious case is the earth itself. Since it rotates on its axis, a reference

frame in which the earth is �xed is de�nitely not inertial. For a lot of things we can

ignore that fact because the rotation is not so fast. For atmospheric phenomena,

however, we must either come to grips with what the Laws of motion in a rotating

frame are, or use an inertial frame, which is very inconvenient. This example will

be examined later in this chapter, in section 7.5. The use of a non-inertial frame

also suggests itself in trying to describe the motion of a rotating rigid body. This

application will be taken up in the next chapter.

In this chapter, we �rst have a critical look at the entire concept of frames of

reference in sectionref frames. We'll see how a reference frame is a way to relate

the spatial organization of the world at di�erent instants of time and that some

reference frames are \better" than others. Having satis�ed ourselves that we know

what we're trying to do, the quantitative relation between descriptions of motion

in two mutually moving and rotating frames is worked out in section 7.4. Since
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156 CHAPTER 7. NON-INERTIAL REFERENCE FRAMES

this involves some new linear algebra, those tools are developed in section 7.3. As

we shall see, motion described in a rotating frame is as if we were operating under

Newton's 2nd Law, but in the presence of some additional �ctitious forces. This is

all put to work in section 7.5, where we look at some of the manifestations of these

�ctitious forces. Finally, the chapter winds up with another critical look at some

of the assumptions about the structure of space and time which underlie the entire

construction of a reference frame.

7.2 Reference Frames

Since this chapter is about describing motion in non-inertial reference frames, it

seems appropriate to have a fresh look at the fundamental notion of reference frame

of whatever sort. Figure 7.1 depicts what we would call a rotating reference frame.

t

x

y

Figure 7.1: A rotating refernence frame. (Or not?) The z-axis is suppressed for

obvious reasons.

It's an x; y; z coordinate system at each instant of time in which the axes don't

point in the `same direction' at di�erent times. But the classi�cation of those axes

as rotating requires comparison to something else. How do we know it's not that

standard which is actually rotating? This question, and related ones, is not trivial.

It's answer involves fundamental principles of mechanics as well as suppositions

(postulates) about the structure of space and time.

Newtonian mechanics is founded upon the postulate that time is something com-

pletely distinct from anything else (such as space). So the question of the time inter-

val between two events, and most importantly the question of whether two events

are simultaneous, has an unambiguous answer. At each instant of time, space is

presumed to have a three dimensional Euclidean structure.reference

frame A reference frame is a procedure for determining whether something is not

moving, and which is consistent with this Euclidean structure. What I mean by
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\consistent" is that two objects which are judged to be stationary must remain

forever at the same distance from one another. This requires also that angles between

stationary lines are constant since a triangle is completely determined by the lengths

of its sides. This requirement on a reference frame stems from the assumption that

the Euclidean structure of space is not changing with time.

From an operational perspective, the simplest way to specify a reference frame

is to choose one point to act as origin, attach a Cartesian coordinate system to it

and keep the axes and origin stationary. In this way, questions about the relation of

one reference frame to another are reduced to questions about the relative positions

of their origins and orientations of their axes.

This is not the end of the story. Not all reference frames are created equal.

The requirement that a reference frame be consistent with the Euclidean structure

of space can be characterized as a kinematical condition. A dynamical condition

is used to winnow the reference frames further into good and not-so-good. The inertial

reference

frame

Principle of Inertia, otherwise known as Newton's First Law of Motion asserts that

there is a special class of reference frames, known as inertial reference frames.

These are the ones in which a particle free from external forces (a free particle)

moves at constant velocity. There is no trick to �nding a reference frame in which

one free particle moves at constant velocity. That it is even possible to do it for all

free particles says something new about the nature of motion.

Newton's Second Law is true only in inertial reference frames. That is the reason

we generally like to work in inertial reference frames. However, it is not absolutely

necessary. Sometimes a non-inertial reference frame is much more convenient for one

reason or another. If we can correctly relate coordinates in this non-inertial frame

to those in an inertial frame, we can determine how to modify Newton's 2nd Law

for use with the non-inertial system of coordinates. That is our basic task of this

chapter.

The de�nition of reference frame presented here is very strong. Often the term

is used in a somewhat weaker sense. A pair of frames, the origins of which maintain

a constant displacement from one another, and whose axes maintain a constant

relative orientation are not really much di�erent. Particularly when speaking of one

or another inertial frame, one really is referring to an entire class of this sort.

I have belabored some very foundational things in this section. We will continue

to take them for granted. But how did Newton know that they are correct? He did

not. Absolute time and the Euclidean structure of space seemed natural to him, and

he had no evidence to suggest that these suppositions were wrong. The situation

remained more-or-less thus for a couple of hundred years. Then Einstein threw them

both overboard. Later (I hope) we will look into that in more detail.
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7.3 Further Adventures in Linear Algebra

7.3.1 operator inverses and changing basis

If the linear operator B is nonsingular (does not map any nonzero vector to zero)

then it is invertible. There exists a linear operator B�1 such that B�1
B = BB

�1 = 1

(1 is the identity operator). According to the rules for matrix multiplication,matrix

inverse
[AB]ij =

X
k

AikBkj;

the matrices for B and its inverse satisfyX
k

[B�1]ikBkj = Æij :

Knowing that an inverse exists is not at all the same as having an eÆcient

algorithm for computing them. There is a formula, called Cramer's rule, for

inverting a matrix. The very explicit formula for a 2� 2 matrix is given below. You

really don't want to use it for anything much larger than that. There are other,

more eÆcient, algorithms which computers are very good at following.

But here is the rule. If you remove the i-th row from a matrix A, close up the

gap to make a nonsquare array, then remove the j-th column and close up again

into a square array, compute the determinant of that and multiply by (�1)i+j , you

have what is known as the i; j cofactor (abbreviated `cof') of A:

[cofA]ij = (�1)i+j(det of A with i-th row, j-th column removed): (3.1)

The infamous formula for the entries in the inverse matrix is then

[A�1]ij =
[cfA]ji
detA

: (3.2)

(Note the reversal of the indices!)

This is obviously something you should avoid if you can. In the case of a 2� 2

matrix, though, things are very simple. You can check by direct multiplication that 
a b

c d

!
�1

=
1

ad� bc

 
d �b

�c a

!
(3.3)

Exercise 7-1 check equation (3.3).

Sometimes one wants to change from one basis to another. For instance, we may

want to use the eigenvectors of some symmetric operator as a basis and then we
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need to know how to re-express our vectors in this basis. It is not always desirable

to use the general method developed here. Particularly in two dimensions, it is

often simpler to use more haphazard techniques. For general abstract arguments,

however, there is no substitute.

Let's consider the old basis e1; : : : ; en and a new basis e01; : : : ; e
0

n, such that the

new basis is expressed in terms of the old by

e
0

i =
X
j

ejSji: (3.4)

At the moment, the Sij are just a collection of numbers, not an operator. So it is

possibly a little confusing that we're about to use matrix techniques to handle them.

But it is in fact the matrix for a recognizable operator. Interpreting it as such,

Sei =
X
j

ejSji = e
0

i (3.5)

so Sij is the matrix, relative to the old basis of the operator which sends ei to e
0

i.

One thing which this tells us is that the operator (hence the matrix) is invertible,

since any vector annihilated by it would have to have all components zero.

So, the formula can be inverted to yield

ei =
X
j

e
0

j[S
�1]ji: (3.6)

This shows how to determine the components of any vector with respect to the new

basis, since

v =
X
i

eivi =
X
i;j

e
0

j[S
�1]jivi: (3.7)

The new and old components are therefore related by

v
0

j =
X
i

[S�1]jivi , vj =
X
i

Sjiv
0

i: (3.8)

The rule for the matrix of an operator in the new basis is now almost as easy.

Computing the action of A on an arbitrary vector v,

Av =
X
i;j

eiAijvj =
X
i;j;k;l

e
0

k[S
�1]kiAijSjlv

0

l =
X
k;l

e
0

k

0
@X

i;j

[S�1]kiAijSjl

1
A v

0

l
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This gives us the following formula:

A
0

ij =
X
k;l

[S�1]ikAklSlj: (3.9)

Example

As an example of the use of these formulas, let's consider an operator whose matrix

is

B =

 
1 1

1 2

!

with respect to the standard basis e1, e2 in the plane. Now we want to change to a

new basis given by

e
0

1 =

 
1

0

!
; e

0

2 =

 
1

1

!
:

The matrix which e�ects this as in equation (3.4) is

S =

 
1 1

0 1

!
;

and, according to equation (3.3), the inverse is

S
�1 =

 
1 �1

0 1

!
:

Then, the matrix for B in the new basis is found by a matrix sandwich

B
0

� S
�1
BS =

 
1 �1

0 1

! 
1 1

1 2

! 
1 1

0 1

!

=

 
1 �1

0 1

! 
1 2

1 3

!

=

 
0 �1

1 3

!
:

To check this and also to show that other methods are often just as good, let's

calculate the action of B on the new basis vectors by expressing them in the old

basis and using the original matrix. We get

e
0

1 = e1 7! e1 + e2 = e
0

2

e
0

2 =

 
1

1

!
7!

 
2

3

!
=

 
�1

0

!
+

 
3

3

!
= �e01 + 3e02:
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This also illustrates two slightly di�erent ways of organizing things. Putting those

together immediately gives a matrix in agreement with B
0.

7.3.2 orthogonal transformations

On a real vector space V which is equipped with an inner (dot) product, there

is a special class of operators which are very important. In discussing symmetric

operators, I pointed out that any basis could be used to de�ne an inner product.

Here, we suppose there is some special �xed once-for-all inner product. Vectors in

real, physical three-dimensional space have such an inner product de�ned on them

and that is the one which will most concern us, but for the moment we can be a

little more general. orthogonal

operatorAn orthogonal transformation is one which preserves all lengths:

jOuj = juj: (3.10)

(I will use the letter O a lot to denote an unspeci�ed orthogonal operator.) This has

as a consequence that all angles are also preserved, by which we mean

(Ou) � (Ov) = u � v; (3.11)

for any pair of vectors u and v in V. That is maybe a little surprising, but not hard

to see. After all,

jO(u+ v)j2 = ju+ vj
2
;

by the original de�nition. Expanding those,

jOuj
2 + 2(Ou) � (Ov) + jOvj2 = juj2 + 2u � v + jvj2:

Now cancelling the parts which are equal by de�nition of orthogonal, equation (3.11)

emerges.

In ordinary three-dimensional space, rotations are orthogonal transformations.

(More about that later) orthogonal

basisAn orthonormal basis is one made of unit vectors which are orthogonal to one

another. The standard basis êx, êy and êz for ordinary three-dimensional vectors is

an orthonormal basis. If we use an orthonormal basis, then

u � (Ov) =

 X
i

uiêi

!
�

0
@X

jk

êjAjkvk

1
A =

X
ik

uiAikvk:

transpose
The transpose A

T of a matrix A is de�ned by

A
T
ij = Aji; (3.12)
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i.e., the entries are re
ected across the diagonal. A symmetric matrix is equal to its

transpose. The transpose of a product of matrices is the product of the transposes

in the reversed order :

[AB]T = B
T
A
T
:

Taking a transpose is like inverting in this respect.

The transpose of a linear operator O is a notion which only makes sense relative

to an inner product. It is de�ned by

u � Av = (AT
u) � v; (3.13)

for all u and v. Since

(AT
u) � v = v � (AT

u) = (ATT
v) � u;

transposing twice is the same as doing nothing: ATT = A.

The matrix of the transpose of an operator is not necessarily the transpose of its

matrix (see example below). However, it is true if the basis is orthogonal.

By the de�nition of the transpose of an operator, we have the relation

(Ou) � (Ov) = u � (OT
Ov)

So, if O is othogonal,

u � (OT
Ov) = u � v:

As this must hold for all vectors u and v, the inescapable conclusion is

O orthogonal , O
T
O = 1 , O

�1 = O
T (3.14)

I'll bring up one more property of orthogonal transformations here. They form

a group. What this means is that the product of two orthogonal transformations is

another, the identity is an orthogonal transformation and every orthogonal transfor-

mation has an inverse (its transpose) which is also orthogonal. The only part which

requires any comment is the closure under taking products. Suppose A and B are

orthogonal. Then

j(AB)vj = jA(Bv)j = jBvj = jvj;

the �rst equality resulting from what we mean by a product of operators, the second

from the fact that A is orthogonal and the last from orthogonality of B.

Example: matrix of transpose generally not the transpose of matrix.

Consider the operator O de�ned on the vectors in the plane by

Oêx = êy; Oêy = �êx (3.15)
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Since this is a rotation by 90Æ counterclockwise, it is clearly orthogonal. The trans-

pose is its inverse, which is rotation by 90Æ clockwise:

O
T
êx = �êy; O

T
êy = êx: (3.16)

Relative to this orthonormal basis, these operators have matrices

[O] =

 
0 �1

1 0

!
; [O]T =

 
0 1

�1 0

!
: (3.17)

So the matrix of OT is the transpose of the matrix of O. But let's try it with the

basis

e
0

1 =

 
1

0

!
; e

0

2 =

 
1

1

!
: (3.18)

Since under O,

e
0

1 7! ey = e
0

2 � e
0

1; e
0

2 7! ey � ex = e
0

2 � 2e01;

the matrix of O with respect to the new basis is

[O]0 =

 
�1 �2

1 1

!
: (3.19)

If this is multiplied by the matrix for the transpose of O, the result should be the

identity matrix. However, the product with the transpose of the matrix [O]0 is

 
0 3

3 5

!
;

which is not the identity at all! So, relative to this basis, the matrix of OT must be

something else.

Exercise 7-2 Carry out that multiplication of a matrix by its transpose to see if

I lied.

Fortunately, we will be using orthonormal bases almost exclusively in this chapter

and the next, because it is the natural thing to do. As a result, you can probably

forget the distinctions we've drawn between operators and matrices without danger

of making mistakes in the near future. But don't forget it on purpose.
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7.3.3 Orthogonal Transformations on Euclidean 3-Space

The orthogonal transformations on Euclidean 3-space are certainly especially in-

teresting. These transformations collectively constitute a group labelled O(3). It

contains ordinary simple rotations, but it also contains some other things. In par-

ticular the inversion �1, which maps every vector to its inverse. One way this

operation can be achieved is to re
ect �rst through the y-z plane, then through the

x-z plane and then through the x-y plane, since these operations successively change

the signs of the components of a vector. The ordinary rotations make up the part

of O(3) called SO(3). These are sometimes called proper rotations to distinguish

them from other elements of O(3). Every other orthogonal transformation can be

realized as a rotation followed by inversion. The proper rotations form a group by

themselves, and it is almost exclusively with those that we will be concerned. The

fact that every orthogonal transformation does take one of these two forms is proven

in section 7.3.4. But you might not feel any need to see that.

The operation of taking a cross product with u,

u� r =
X

êi�ijkujrk; (3.20)

is not an orthogonal operator, but it is closely related. It is clearly linear, and a

little manipulation will reveal its matrix. Calling the matrix A,

Aij =
X
k

�ikjuk = �
X
k

�ijkuk: (3.21)

Writing that out in the matrix form,matrix for

cross prod-

uct

Aij =

0
B@

0 �u3 u2

u3 0 �u1

�u2 u1 0

1
CA : (3.22)

This matrix is antisymmetric, which means that taking the transpose is the same

as changing the sign: AT = �A. In fact, every antisymmetric matrix is the matrix

for a cross product operation because the three entries above the diagonal of an

antisymmetric matrix determine the whole thing, and those can be made whatever

we please by choosing the right u.

There is a simple way to manufacture a linear operator on an inner product space

from a pair of vectors u and v which will be useful for writing the inertia tensor

when we study rigid body motion, so I will describe it now. It is de�ned by

(u
 v)w =
def

u[v �w]: (3.23)
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Such an operator is sometimes referred to as the outer product of u and v. De-

scribed in words, its e�ect is to project a vector onto v and then swap that projection

for the same multiple of u. If we use u in both slots, we get an orthogonal pro-

jection,

�
û

=
def u
 u

juj2
: (3.24)

Applied to a vector w, this simply throws away the part which is orthogonal to u.

We can combine this projection operator with the cross product operator dis-

cussed just before to write down a representation of an arbitrary rotation about u.

It's not a useful as you might think, but interesting nonetheless.

Rotation about a unit vector û is a linear operation. So we can easily reconstruct

it from its e�ect on vectors parallel û (it does nothing to them), and its e�ect on

vectors in the plane orthogonal to û. On the latter, the rotation through an angle

� is

R�(û)v = (cos �)v + (sin �)û� v:

Adding in the `do nothing' on vectors parallel to û,

R�(û)v = (û
 û)v + (1� û
 û) [(cos �)v + (sin �)û� v] : (3.25)

7.3.4 O(3) = rotations + inversion

r
Or

u

Ov

v

u

Figure 7.2: A rotation about u moves r into another vector on a cone centered on

u, as at left. The component of r along u is una�ected by the rotation. We subtract

that part out to form v = Or� r, which then lies in the plane perpendicular to u as

at right. v and its image under O can be used to �nd u because the span the plane

orthogonal to it.
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In this subsection, we prove the assertion that all orthogonal transformations on

Euclidean 3-space is either a simple rotation about some axis, or a rotation followed

by an inversion.

The �rst step is to show that the orthogonal transformation O has a real eigen-

vector. This can be done by appealing to a general result which asserts that for each

distinct root of the characteristic equation (eigenvalue), there is an eigenvector. But,

in our case it can be done quite directly, so let's see that. We have used complex

eigenvectors without much comment before, so I want to emphasize that I'm talking

about an eigenvector whose components are real. This means that the eigenvalue

must be real, too, since O is real.

Assume (contrary to what we intend to show) that O has no real eigenvectors.

Then an arbitrarily chosen vector r is not mapped into a multiple of itself by O.

And therefore

v = Or� r

is a nonzero vector. Since, by assumption, v isn't an eigenvector either,

u = Ov � v = [O(Or� r)]� (Or� r)

is also nonzero. We will show that it is an eigenvector of O. First,

u ? v) Ou ? Ov:

But Ou is also perpendicular to v since

(Ou) � v = (Ou) � (Or)� (Ou) � r

= u � r� u � (Or)

= �u � (Or� r) = 0:

Therefore Ou is perpendicular to both v and Ov, so is proportional to u.

That settles that part. O has at least one eigenvector, which we'll call u for the

duration. The associated eigenvalue must be either 1 or �1. After all, Ou has the

same length as u and �u are the only vectors proportional to u with that length.

Then vectors in the plane perpendicular to u must be kept in that plane by

O since their images must stll be orthogonal to u. (see �gure 7.2 (a)) If O has

an eigenvector v in this plane then the vector orthogonal to both must also be an

eigenvector, since its image under O must still be orthogonal to both of those. Put

aside for the moment the possibility that there are any eigenvectors in the plane

perpendicular to u, and pick any vector in that plane. Its image, Ov, is the same

length and still in this plane, so must just be v rotated around u by some angle.

Since all angles are preserved by O, it must rotate all the vectors in that plane by

the same angle.
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A
rA

B

(a)

B

rB

(b)

Figure 7.3: A pair of reference frames.

So, in this case, O is a rotation in the plane perpendicular to u. If Ou = u,

then it is a simple rotation. A rotation by � in that plane, followed by a re
ection

through it, to change the sign of u is the same thing as rotating by � + � and then

performing an inversion. (picture it!) If O has just one eigenvector then, it is either

a simple rotation or a rotation followed by inversion.

Now we have to clean up the case put aside earlier: O has three mutually or-

thogonal eigenvectors. If all three eigenvalues are +1, it is the identity, which is a

rotation by zero (about any axis you choose!). If one eigenvalue is �1, O is a 180Æ

rotation about the corresponding eigenvector followed by inversion. If two eigenval-

ues are �1, it is a 180Æ rotation about the leftover eigenvector. And, �nally, if all

three eigenvalues are �1, it is the inversion itself.

Exercise 7-3 Picture those operations in your head to verify the assertions.

Well, that takes care of that.

7.4 Description of Motion in Di�ering Reference Frames

Now we get down to business and look into the problem of relating the description of

motion in two di�erent reference frames. In general, their origins may not coincide

and may be in relative motion. As well, the coordinate axes of the two frames may

not be oriented in the same way. The second problem is the more diÆcult and

unfamiliar. We will put o� adding the distraction of non-coincident origins until

section 7.4.2.
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Figure 7.3 depicts a pair of reference frames, and the speci�cation of an object's

position by vectors relative to each of them. The position vector of an object is

determined by the orientation of that frame's axes. Hence the position rB has a

negative y-component because the vector is below the x-axis in frame B.

7.4.1 relative rotations

Until further notice, we'll assume that we are dealing with two reference frames, A

and A, whose origins coincide at all times. They are therefore related by a pure

rotation. Each point in space is located by a vector from the origin of a reference

frame to that point, and the coordinate axes are used to identify that vector. A

point one meter from the origin along the x0 axis is referred to by the vector êx in

the frame A0. In the A frame, it corresponds to a di�erent vector.

It can help to avoid confusion if we try to think about position vectors in di�erent

reference frames as belonging to completely separate vector spaces.

We have just seen that the same point in space is referenced by di�erent vectors

in the two reference frames A and A0. They are related by

r(t) = O(t)r0(t): (4.26)

Inverting this to get the relation the other direction,

r
0(t) = O(t)�1r(t) = O(t)T r(t): (4.27)

Now, to relate velocities measured relative to the two reference frames, we need to

take a time derivative, to get

dr

dt
=

d

dt

�
Or

0

�
=

dO

dt
r
0 +O

dr
0

dt
: (4.28)

The �rst term of the �nal expression here can be rewritten in terms of r instead

of r0. Inserting equation (4.27), it becomes

_OOT
r:

Since O is orthogonal, OOT = 1 is time independent. Di�erentiating, you discover

that
_OOT +O _OT = 0:

But, h
_OOT

iT
= O _OT

;
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which together with the previous equation implies that _OOT is an antisymmetric

operator. According to section 7.3.3, that means that it can be written as a cross-

product operation:

B � _OOT = ! � ( ): (4.29)

In a moment, we'll see what the meaning of ! is, but �rst put it back into equation

(4.28) to get

dr

dt
= ! � r+O

dr
0

dt
: (4.30)

From this you can see that any object stationary with respect to A0 (so _r0 = 0) has

an angular velocity ! as seen from A. Since the coordinate axes of A0 can themselves

be considered objects stationary in frame A0, we refer to ! as the angular velocity

of A0 relative to A (as measured in A). relative

angular

velocity

The angular velocity of A0 relative to A, as measured in A, on the other hand, is

O
T
!. We need the OT because the coordinate axes are generally not pointing in the

same direction. Suppose A0 had its z-axis along the x-axis of A and was spinning

about that axis. According to A, the relative angular velocity is in the x direction,

but according to A0, it is in the z direction.

Question 7-1 In one of the steps leading to equation (4.29), there was an _OT .

Since OT = O
�1, we might have written that as _O�1. I chose not to do so because

the latter notation is ambiguous, whereas the former is not. How? (Hint: Is the

time derivative of an inverse the same as the inverse of the time derivative?)

accelerations

Since Newton's Second Law involves accelerations, we really want to see how

the second time derivatives of r and r
0 are related. Following our noses, we could

di�erentiate again and try to identify !'s and so forth in the debris. That's not so

hard, but let's take a slightly di�erent tack.

The key is the identity

O
d

dt
O
T =

d

dt
� B: (4.31)

What this means is that if anything (for instance r(t)) is put to the right of these

expressions, and the time derivatives allowed to act on everything to their right,

the results will be equal. To see that this is true only requires computing the time

derivative of OT , which we do now. From

0 =
d

dt
(OOT ) = _OOT +O _OT

;
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you can immediately deduce

_OT = �OT _OOT
: (4.32)

With this result in hand,

O
d

dt
O
T = O

�
�O

T _OOT +O
T d

dt

�
:

Cleaning up a bit and substituting the de�nition of B results in equation (4.31).

Exercise 7-4 I said you could deduce eq. (4.32). Demonstrate that I did not lie.

Also make that last step to recover eq. (4.31).

Perhaps you are wondering what the point of such a strange-looking identity is.

Let's see. Apply it to r. From the left-hand side, you get

O
d

dt
O
T
r = O

d

dt
r
0 = O _r0;

and from the right-hand side �
d

dt
� B

�
r:

This relates the time derivative of r0 to that of r. Repeating the operation,

O
d

dt
O
T
O

d

dt
O
T =

�
d

dt
� B

��
d

dt
� B

�
:

The O and O
T in the left-hand side pair up to give the identity, so that this is

equivalent to

O
d
2

dt2
O
T =

�
d

dt
� B

�2

: (4.33)

The right-hand side expands to�
d

dt
� B

��
d

dt
� B

�
=

d
2

dt2
� 2B

d

dt
� _B+ BB:

Applying this to r now,

�r = O�r0 + (2! � _r) + ( _! � r) � (! � ! � r) : (4.34)

We want to rewrite this with the rôles of the two reference frames reversed. The

transformation of position vectors from A to A0 is achieved not by O, but by its
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inverse OT . Since nothing was priviledged about one reference frame or the other,

we could just go through, replacing O by OT , and primed things by unprimed and

vice-versa. !0 would be the angular velocity of A relative to A0 in frame A0. The

angular velocity of A0 relative to A in A0 is minus this, and is henceforth denoted

by 
. In fact,


 = O
T
! = �!:

With those replacements,

�r0 = O
T�r�

�
2
� _r0

�
�

�
_
� r

0

�
�
�

�
� r

0

�
: (4.35)

The parentheses in this equation only serve to help the eye sort things out. The

last term means to perform the cross product operations one-by-one, working from

right to left. That is, it should be read as 
 � (
 � r). It makes a di�erence {


 �
 = 0! The \extra" terms on the right hand side, apart from the �rst, are a

little mysterious. They be interpreted in section 7.5.

Exercise 7-5 Work out the analogue of equation (4.33) for higher derivatives and

see that all the internal O's and O's pair up and disappear.

7.4.2 relative translation

With just a little more work, we can extend what we've done to the case of reference

frames whose origins are not coincident and possibly moving with respect to each

other (this situation is shown in �gure 7.3). Again, the two frames we're interested

in are labelled A and A0. To get us over the hump, invent a new one, A00. It has its

origin in the same place as does A0, but its axes are aligned with those of A. The

location of this origin in frame A is denoted by R0(t). Now we transfer position

vectors from A0 to A in two stages. The angular velocity of A0 is the same with

respect to A00 and A, namely !. Then,

r
00 = Or

0

r = R0 + r
00

: (4.36)

When we take time derivatives now, the only extra thing is derivatives of R0.

Here they are:

_r = _R0 +O _r0 + ! � r

�r = �R0 +O�r0 + (2! � _r) + ( _! � r)� (! � ! � r) : (4.37)
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7.5 Centrifugal and Coriolis \Forces"

That's all the hard work for now. The situation in which we are mostly interested

in applying this is that in which A0 is an inertial reference frame and we need to

work out the equation of motion for a particle's position with respect to A. If it's

mass is m, equation (4.35) immediately gives us

�r0 = F
0

=m�O
T �R0 +� _
� r

0

� 2
� _r0 �
�
� r
0

: (5.38)

F
0 = O

T
F is the force as measured in frame A0, and R

0

0 = O
T
R0 is the position of

the origin of A0 relative to that of A as measured in A0. The OT is needed to correct

for the di�ering alignments of the axes in the two reference frames. A is not an

inertial frame if it is rotating with respect to A0, so that 
 6= 0. Some extra terms

appear in the equation of motion by comparison to what is there for an inertial

reference frame.�ctitious

forces If the other terms were interpreted as extra forces, we could pretend that we were

working in an inertial reference frame. The advantage of this is not clear to me, but

there are traditional names attached to these things to re
ect that point of view.

The term �m
�
� r
0 is called the centrifugal force, and is no doubt somewhat

familiar, though this form probably isn't. Without the m, as it actually appears

in the equation, it is the centrifugal acceleration. Using the identity a� (b � c) =

b(a � c) � c(a � b) (the \BAC � CAB" rule),

�
�
� r
0 = �(
 � r0)
+ j
j2 r0: (5.39)

If r is perpendicular to 
, this reduces to the centrifugal acceleration you've seen

before.

The term 2m
� _r0 is called the Coriolis force. The remaining term, m _
� r
0

seems to usually go without a name. In most applications it disappears anyway

because _
 = 0 unless the rotation of A and A0 is nonuniform.

From now on, I'm going to mostly omit the primes on position vectors etc.

measured in the moving reference frame. This should cause no confusion because

we will do all the calculations in that frame.

7.5.1 Life on a Turntable

Actually, none of the extra terms in the noninertial-frame equation of motion are

terribly mysterious. Let's look at a simple situation to understand that. Imagine

yourself situated at the axis of a giant turntable, the surface of which is frictionless.

Your reference frame has axes �xed in the structure of the turntable. We suppose it

to be rotating with angular velocity 
 with relative to an inertial reference frame.

To be more precise, say 
 counterclockwise, so that 
 = 
 êz is directed upward.
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Your dog is radially outward from you, lying on the ground at the end of his

leash. (don't ask how he got there, but he gave up trying to walk on the frictionless

surface). From your perspective, his acceleration is zero. Yet, you must pull on the

leash in order to keep Rover from 
ying o�. This is required in order to counter the

centrifugal force

m
2
r

which is directed outward. From an inertial observers point of view, your pulling on

the leash provides the only force acting on Rover. It is simply the force required to

accelerate him into a circular trajectory. Rover

The leash snaps. There are no real forces acting on Rover now. In the inertial

reference frame A, he now moves in a straight line at constant speed. In your frame,

he initially has no tangential velocity, but immediately begins to accelerate outward,

away from you. After he has slid a short distance, his tangential velocity will no

longer be as large as that of the turntable material above which he is situated. Thus,

in the turntable frame, Rover appears to veer o� clockwise. You can interpret this

as the Coriolis force. Let's check the magnitude and, most importantly, the sign:

\Coriolis force" = �2m
� _r

= �2m
 êz � _r

= �2m
 êz � ( _r êr + r _� ê�)

= 2m
(� _r ê� + r _� êr):

So, a positive _r gives rise to a �ctitious force in the �ê� direction, which is clockwise.

That's good.

Bye, Rover.

7.5.2 Rocks, Rivers and Drains

In this section, we look into some e�ects of the rotation of the earth, working in

a frame �xed with respect to the earth, and which is therefore non-inertial. The

magnitude of the earth's angular velocity is 
 = 2�=(1 day) = 7:27�10�5 s�1. This

gives rise to a centrifugal acceleration which is directed away from the earth's axis.

That direction is vertical at the equator, and becomes horizontal at the poles. Since

the radius of the earth is 6380 km, 
2
RE = 0:0337 m/s2 � 3 � 10�3g. At the

equator, the centrifugal force is 3/1000 times the weight. In general

acent = 
2
RE sin� = 3:4 � 10�3g cos �;

where � is the latitude. This acceleration is not directed vertically but is totally

independent of the state of motion of objects, so is indistiguishable from a small



174 CHAPTER 7. NON-INERTIAL REFERENCE FRAMES

ω
g0

g

−ω ω r

Figure 7.4: The centrifugal force modi�es the local acceleration of gravity from

g0 which it would be if the earth did not rotate, to g. The change is extremely

exaggerated in this �gure; it is never greater than a degree.

change of the local acceleration of gravity, so that g does not point quite toward the

center of the earth, as shown in �gure 7.4.

A moving object will also experience a Coriolis acceleration �2
 � v. If we

adopt a local coordinate system in which the z axis is along the vertical and the

positive x direction points down a line of longitude toward the equator,


 = 
[êz sin�� êx cos�]; (5.40)

where � is the latitude again. The acceleration of an object moving under gravity

is then

a = g � 2
� v: (5.41)

Example.

A rock is dropped down a mine shaft 250 m deep at the latitude of St. Petersburg

(60Æ north). How far will it deviate from a straight drop along g?

If it were not for the Coriolis acceleration, the velocity of the rock would be

v = gt = �gt êz. As the rock falls, the Coriolis acceleration will cause it to develop

a horizontal velocity (see equation 5.40). Putting this into the Coriolis term of

equation (5.41) results in

_v = �g êz � 2
 cos �vzêy = �g êz � 2
gt cos �êy:
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We have not put the entire velocity into the coriolis term. In principle the y com-

ponent of v should also go into that, but it is very small, so can be neglected. This

is easily integrated twice to give the position:

r(t) = �
gt

2

2
êz �


gt3

3
êy:

The time to fall a distance D is
p
2g=D, so the net de
ection is

�y = g
cos �
1

3

�
2D

g

�3=2

=

cos �(2D)3=2

3g1=2
:

Inserting numerical values,

�y = 4:3 cm:

One lesson of this example is that the e�ects of the Coriolis acceleration are

pretty slight over modest distances like this. Over longer distances, such as occur in

hurricanes, it can amount to a lot.

In the northern hemisphere, the vertical component of 
 is positive and in the

southern hemisphere negative. This means that the horizontal motion of an object

is de
ected to the right in the northern hemisphere. It would close into a clockwise

circle (seen from above), given enough distance. In the southern hemishpere, the

direction is reversed. This is de�nitely signi�cant for weather patterns. Possibly also

rivers. The Volga tends to undermine its right bank in the middle of its course where

the curvature is slight.1 Sometimes people make the claim that water going down

a drain will swirl clockwise in the northern hemisphere on account of the Coriolis

acceleration. This is certainly false as even the slightest current in the water before

the drain is opened or asymmetry in the drain itself would surely swamp the e�ect.

7.5.3 The Foucault Pendulum

An interesting manifestation of the Coriolis force is provided by the Foucault pen-

dulum. A Foucault pendulum is really nothing other than a pendulum which is free

to swing in two di�erent directions, so is di�erent from a plane pendulum whose

motion is restricted to a plane by swinging on a �xed axle. A weight at the end of

a wire will do.

Ignoring the Coriolis acceleration, we are dealing with a familiar situation. Orient

the coordinate system so that z is vertical and x points down a line of longitude,

as for the rock in the mine shaft. For a pendulum of length `, the Coriolis-free

1So says V. I. Arnold, I presume the Mississippi does the same!
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equations of motion are simply

�x = ��x

�y = ��y;

where

� =
g

`

is the frequency of small vibrations of the pendulum.

Decompose the angular velocity of the earth as in equation (5.40),


 = 
[êz sin�� êx cos �];

and add the Coriolis acceleration �2
� v to the equations of motion. Only the z

component of 
 makes any di�erence to the horizontal motion, so

�x = ��x+ 2
z _y

�y = ��y � 2
z _x: (5.42)

We have seen ways to solve coupled equations like these. But let's use a clever

trick. Combine x and y, which are real (Duh!) into a complex variable,

w = x+ iy:

Then the two equations of motion become a single equation for this new complex

coordinate:

�w + 2i
z _w + �
2
w = 0: (5.43)

This is precisely the equation of motion for a damped harmonic oscillator, studied

in chapter 3, except that the damping is imaginary. Just substitute � for 
0 and

2i
z for !0=Q = � in equation (3.4.9) We can immediately write down the solution

from equation (3.4.11):

w(t) =
�
Ae

i!0t +Be
�i!0t

�
e
�i
zt; (5.44)

with

!
0 =
p
�2 +
2

z � �:

The di�erence from the oscillator is that this time we really do want a complex-

valued solution. The real part of w is x and the imaginary part is y. Now the x-y

plane is identi�ed with the complex w-plane. If we arrange initial conditions so that

the factor in parentheses in the solution (5.44) is real, near time t = 0 the pendulum
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is oscillating along the x-direction only. Slowly, the phase factor e
�i
zt rotates it

in the x-y plane. The line along which the pendulum swings rotates around with a

period

� =
2�


z
=

2�


earth sin�
=

1day

sin�
; (5.45)

where � is the latitude.

7.6 Relativity and \Obvious" Things

The discussion of reference frames at the very beginning of this chapter was at the

brink of both special and general relativity. In this section, we'll have another quick

look at those issues. An absolutely crucial assumption in making everything work

was that there is no ambiguity in the idea of the time interval between a pair of

events, and particularly in the notion of simultaneity. It is now beyond doubt that

this is not rigorously true. Events which are judged simultaneous in one frame

are not necessarily so in a reference frame moving with respect to it. However, the

discrepancy is very slight unless the relative speed of the two frames is an appreciable

fraction of the speed of light.

This does not mean that one observer is right and the other wrong. They are

both right. In each reference frame, space is still Euclidean at each instant of time.

But the speci�cation of a particular instant of time is no longer something which

is the same from one reference frame to another. As a result, time gets tangled up

with the transformation from one reference frame to another even when they are

not rotating relative to one another.

You will notice that the �ctitious forces which appear in a rotating frame, the

centrifugal and Coriolis forces, are really accelerations because the force on an object

is proportional to its mass. Indeed I called them accelerations. This is a clue to

the fact that they are not real forces, but are kinematic properties of the reference

frame itself. The gravitational force on a body shares this property. Perhaps it is

not really a force either? This idea is one opening through which general relativity

can be developed. It immediately points up a problem in the use of our de�nition of

an inertial reference frame. That de�nition utilized the concept of a free particle {

one with no forces acting on it. This seems innocent enough, but to test a reference

frame for \inertial-ness" we should get a free particle. There's no trouble getting

a particle which is not subject to electromagnetic forces | just �nd a neutral one.

Also, we can keep other bodies from coming into contact with our test particle and

pushing on it. But there's no way to isolate it from the e�ects of gravity. The only

way, within the Newtonian framework, to �nd an inertial reference frame in the
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presence of gravity is to explicitly calculate the gravitational forces and compensate

for them.

Maybe a particle moving only under the in
uence of gravity really is free and a

freely-falling reference frame is an inertial reference frame. This is the point of view

of general relativity. Gravity becomes no longer a force, but a property of the space

(more properly spacetime) through which the particle moves. This does require us

to give up the global Euclidean structure of space, however. Near the earth, you can

set up a freely-falling Cartesian coordinate system over a distance small compared

to the size of the earth, but if you try to extend it to the other side of the planet,

particles stationary with respect to that frame are not freely falling. In fact, they're

accelerating upward! Something has to give, and that something is the geometry of

space.


